NCERT Solutions Class 11 Maths Chapter-3 (Trigonometric Functions)Miscellaneous Exercise

NCERT Solutions Class 11 Maths Chapter-3 (Trigonometric Functions)Miscellaneous Exercise

NCERT Solutions Class 11 Maths from class 11th Students will get the answers of Chapter-3 (Trigonometric Functions)Miscellaneous Exercise . This chapter will help you to learn the basics and you should expect at least one question in your exam from this chapter.
We have given the answers of all the questions of NCERT Board Mathematics Textbook in very easy language, which will be very easy for the students to understand and remember so that you can pass with good marks in your examination.
Solutions Class 11 Maths Chapter-3 (Trigonometric Functions)Miscellaneous Exercise
NCERT Question-Answer

Class 11 Mathematics

Chapter-3 (Trigonometric Functions)Miscellaneous Exercise

Questions and answers given in practice

Chapter-3 (Trigonometric Functions)

Miscellaneous Exercise

Q1. Prove that: 
Answer.  L.H.S. =2cos13cos913+cos513+cos513=2cos13cos913+2cos(313+5132)cos(3135132)[cos+cos=2cos(+2)cos(2)] =2cos13cos913+2cos413cos(13)=2cos13cos913+2cos413cos13=2cos13[cos913+cos413] 

Q2. Prove that: (sin 3x + sin x) sin x + (cos 3x – cos x) cos x = 0
Answer.  L.H.S. =(sin3+sin)sin+(cos3cos)cos 
Q3. Prove that: (cos+cos)2+(sinsin)2=4cos2+2

Answer.  L.H.S. =(cos+cos)2+(sinsin)2=cos2+cos2+2coscos+sin2+sin22sinsin=(cos2+sin2)+(cos2+sin2)+2(coscossinsin) =1+1+2cos(+)=2+2cos(+)[cos(+)=(coscossinsin)] 
Q4. Prove that: 
Answer. L.H.S =(coscos)2+(sinsin)2 =cos2+cos22coscos+sin2+sin22sinsin=(cos2+sin2)+(cos2+sin2)2[coscos+sinsin] =1+12[cos()][cos()=coscos+sinsin] =2[1cos()] =2[1{12sin2(2)}][cos2=12sin2] 
Q5. Prove that: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x
Answer. It is known that sin+sin=2sin(+2)cos(2)  L.H.S. =sin+sin3+sin5+sin7=(sin+sin5)+(sin3+sin7)=2sin(+52)cos(52)+2sin(3+72)cos(372) =2sin3cos(2)+2sin5cos(2)=2sin3cos2+2sin5cos2=2cos2[sin3+sin5]=2cos2[2sin(3+52)cos(352)] 
Q6. Prove that: 
Answer. It is known that sin+sin=2sin(+2)cos(2),cos+cos=2cos(+2)cos(2) L.H.S =(sin7+sin5)+(sin9+sin3)(cos7+cos5)+(cos9+cos3) =[2sin(7+52)cos(752)]+[2sin(9+32)cos(932)][2cos(7+52)cos(752)]+[2cos(9+32)cos(932)] 

Q7. Prove that: 
Answer. L.H.S =sin3+sin2sin =sin3+(sin2sin)=sin3+[2cos(2+2)sin(22)][sinsin=2cos(+2)sin(2)] =sin3+[2cos(32)sin(2)]=sin3+2cos32sin2 =2sin32cos32+2cos32sin2[sin2=2sincos] =2cos(32)[sin(32)+sin(2)]=2cos(32)[2sin{(32)+(2)2}cos{(32)(2)2}][[sin+sin=2sin(+2)cos(2)] 
Q8. Find sin2,cos2 and tan2 in 
Answer. Here, x is in quadrant II. 2<<4<2<2 Therefore, sin2,cos2 and tan2 are all positive. It is given that tan=43 sec2=1+tan2=1+(43)2=1+169=259cos2=925cos=±35 As x is in quadrant II, cos x is negative. cos=35 Now, cos=2cos22135=2cos2212cos22=135 2cos22=25cos22=15 cos2=15cos2 is positive ] cos2=55sin22+cos22=1sin22+(15)2=1sin22=115=45 sin2=25[sin2 is positive ] sin2=255tan2=sin2cos2=(25)(15)=2 Thus, the respective values of 

Q9. Find sin2,cos2 and tan2 in cos=13, in quadrant III.
Answer. Here, x is in quadrant III.  i.e., <x<322<x2<34 Therefore, cos2tan2 are negative, whereas  sin2 is positive. It is given that cos=13cos=12sin22sin22=1cos2sin22=1(13)2=(1+13)2=32=23 sinx2=23[sinx2 is positive ] sin2=23×33=63cos=2cos221 cos22=1+cos2=1+(13)2=(313)2=(23)2=13cos2=13 cos2=13×33=33tan2=sin2cos2=(23)(13)=2 Thus, the respective values of sin2,cos2 and tan2 are 63,33, and 2.

Q10. Find sin2,cos2 and tan2 in sin=14, is in quadrant II.
Answer. Here, x is in quadrant II.  i.e., 2<<4<2<2 Therefore, sin2,cos2 and tan2 are all positive. It is given that sin=14 cos2=1sin2=1(14)2=1116=1516cos=154[cos is negative in quadrant II ] sin2x2=1cosx2=1(154)2=4+158 sinx2=4+158[sinx2 is positive ] =4+158×22=8+21516=8+2154 cos2x2=1+cosx2=1+(154)2=4158 cos2=4158[cos2 is positive ] =4158×22=821516=82154 tan2=sin2cos2=(8+215482154)=8+2158215 =8+2158215×8+2158+215=(8+215)26460=8+2152=4+15 Thus, the respective values of sin2,cos2 and tan2 are 8+2154,82154, and