NCERT Question-Answer
Class 11 Mathematics
Chapter-3 (Trigonometric Functions)Miscellaneous Exercise
Questions and answers given in practice
Chapter-3 (Trigonometric Functions)
Miscellaneous Exercise
Q1. Prove that: 2cosπ13cos9π13+cos3π13+cos5π13=0
Answer. L.H.S. =2cosπ13cos9π13+cos5π13+cos5π13=2cosπ13cos9π13+2cos(3π13+5π132)cos(3π13−5π132)[cosx+cosy=2cos(x+y2)cos(x−y2)] =2cosπ13cos9π13+2cos4π13cos(−π13)=2cosπ13cos9π13+2cos4π13cosπ13=2cosπ13[cos9π13+cos4π13] =2cosπ13[2cos(9π13+4π13)cos(9π13−4π132)]=2cosπ13[2cosπ2cos5π26]=2cosπ13×2×0×cos5π26=0=R.H.S
Q2. Prove that: (sin 3x + sin x) sin x + (cos 3x – cos x) cos x = 0
Answer. L.H.S. =(sin3x+sinx)sinx+(cos3x−cosx)cosx =sin3xsinx+sin2x+cos3xcosx−cos2x=cos3xcosx+sin3xsinx−(cos2x−sin2x)=cos(3x−x)−cos2x[cos(A−B)=cosAcosB+sinAsinB]=cos2x−cos2x=0=R.H.S
Q3. Prove that: (cosx+cosy)2+(sinx−siny)2=4cos2x+y2
Answer. L.H.S. =(cosx+cosy)2+(sinx−siny)2=cos2x+cos2y+2cosxcosy+sin2x+sin2y−2sinxsiny=(cos2x+sin2x)+(cos2y+sin2y)+2(cosxcosy−sinxsiny) =1+1+2cos(x+y)=2+2cos(x+y)[cos(A+B)=(cosAcosB−sinAsinB)] =2[1+cos(x+y)]=2[1+2cos2(x+y2)−1][cos2A=2cos2A−1]=4cos2(x+y2)=R.H.S
Q4. Prove that: (cosx−cosy)2+(sinx−siny)2=4sin2x−y2
Answer. L.H.S =(cosx−cosy)2+(sinx−siny)2 =cos2x+cos2y−2cosxcosy+sin2x+sin2y−2sinxsiny=(cos2x+sin2x)+(cos2y+sin2y)−2[cosxcosy+sinxsiny] =1+1−2[cos(x−y)][cos(A−B)=cosAcosB+sinAsinB] =2[1−cos(x−y)] =2[1−{1−2sin2(x−y2)}][cos2A=1−2sin2A] =4sin2(x−y2)=R.H.S
Q5. Prove that: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x
Answer. It is known that sinA+sinB=2sin(A+B2)⋅cos(A−B2) L.H.S. =sinx+sin3x+sin5x+sin7x=(sinx+sin5x)+(sin3x+sin7x)=2sin(x+5x2)⋅cos(x−5x2)+2sin(3x+7x2)cos(3x−7x2) =2sin3xcos(−2x)+2sin5xcos(−2x)=2sin3xcos2x+2sin5xcos2x=2cos2x[sin3x+sin5x]=2cos2x[2sin(3x+5x2)⋅cos(3x−5x2)] =2cos2x[2sin4x⋅cos(−x)]=4cos2xsin4xcosx= R.H.S.
Q6. Prove that: (sin7x+sin5x)+(sin9x+sin3x)(cos7x+cos5x)+(cos9x+cos3x)=tan6x
Answer. It is known that sinA+sinB=2sin(A+B2)⋅cos(A−B2),cosA+cosB=2cos(A+B2)⋅cos(A−B2) L.H.S =(sin7x+sin5x)+(sin9x+sin3x)(cos7x+cos5x)+(cos9x+cos3x) =[2sin(7x+5x2)⋅cos(7x−5x2)]+[2sin(9x+3x2)⋅cos(9x−3x2)][2cos(7x+5x2)−cos(7x−5x2)]+[2cos(9x+3x2)⋅cos(9x−3x2)] =[2sin6x⋅cosx]+[2sin6x⋅cos3x]=[2cos6x⋅cosx]+[2cos6x⋅cos3x]=2sin6x[cosx+cos3x]2cos6x[cosx+cos3x]=tan6x= R.H.S.
Q7. Prove that: sin3x+sin2x−sinx=4sinxcosx2cos3x2
Answer. L.H.S =sin3x+sin2x−sinx =sin3x+(sin2x−sinx)=sin3x+[2cos(2x+x2)sin(2x−x2)][sinA−sinB=2cos(A+B2)sin(A−B2)] =sin3x+[2cos(3x2)sin(x2)]=sin3x+2cos3x2sinx2 =2sin3x2⋅cos3x2+2cos3x2sinx2[sin2A=2sinA⋅cosB] =2cos(3x2)[sin(3x2)+sin(x2)]=2cos(3x2)[2sin{(3x2)+(x2)2}cos{(3x2)−(x2)2}][[sinA+sinB=2sin(A+B2)cos(A−B2)] =2cos(3x2)⋅2sinxcos(x2)=4sinxcos(x2)cos(3x2)=R.H.S
Q8. Find sinx2,cosx2 and tanx2 in tan′x=−43,x in quadrant II
Answer. Here, x is in quadrant II. π2<x<π⇒π4<x2<π2 Therefore, sinx2,cosx2 and tanx2 are all positive. It is given that tanx=−43 sec2x=1+tan2x=1+(−43)2=1+169=259∴cos2x=925⇒cosx=±35 As x is in quadrant II, cos x is negative. cosx=−35 Now, cosx=2cos2x2−1⇒−35=2cos2x2−1⇒2cos2x2=1−35 ⇒2cos2x2=25⇒cos2x2=15 ⇒cosx2=1√5∵cosx2 is positive ] ∴cosx2=√55sin2x2+cos2x2=1⇒sin2x2+(1√5)2=1⇒sin2x2=1−15=45 ⇒sinx2=2√5[∵sinx2 is positive ] ∴sinx2=2√55tanx2=sinx2cosx2=(2√5)(1√5)=2 Thus, the respective values of sinx2,cosx2 and tanx2are2√55,√55, and 2
Q9. Find sinx2,cosx2 and tanx2 in cosx=−13,x in quadrant III.
Answer. Here, x is in quadrant III. i.e., π<x<3π2⇒π2<x2<3π4 Therefore, cosx2andtanx2 are negative, whereas sinx2 is positive. It is given that cosx=−13. cosx=1−2sin2x2⇒sin2x2=1−cosx2⇒sin2x2=1−(−13)2=(1+13)2=32=23 ⇒sinx2=√2√3[∵sinx2 is positive ] ∴sinx2=√2√3×√3√3=√63cosx=2cos2x2−1 ⇒cos2x2=1+cosx2=1+(−13)2=(3−13)2=(23)2=13⇒cosx2=−1√3 ∴cosx2=−1√3×√3√3=−√33tanx2=sinx2cosx2=(√2√3)(−1√3)=−√2 Thus, the respective values of sinx2,cosx2 and tanx2 are √63,−√33, and −√2.
Q10. Find sinx2,cosx2 and tanx2 in sinx=14,x is in quadrant II.
Answer. Here, x is in quadrant II. i.e., π2<x<π⇒π4<x2<π2 Therefore, sinx2,cosx2 and tanx2 are all positive. It is given that sinx=14 cos2x=1−sin2x=1−(14)2=1−116=1516⇒cosx=−√154[cosx is negative in quadrant II ] sin2x2=1−cosx2=1−(−√154)2=4+√158 ⇒sinx2=√4+√158[∵sinx2 is positive ] =√4+√158×22=√8+2√1516=√8+2√154 cos2x2=1+cosx2=1+(−√154)2=4−√158 ⇒cosx2=√4−√158[∵cosx2 is positive ] =√4−√158×22=√8−2√1516=√8−2√154 tanx2=sinx2cosx2=(√8+2√154√8−2√154)=√8+2√15√8−2√15 =√8+2√158−2√15×8+2√158+2√15=√(8+2√15)264−60=8+2√152=4+√15 Thus, the respective values of sinx2,cosx2 and tanx2 are √8+2√154,√8−2√154, and 4+√15.