NCERT Solutions Class 11 Maths Chapter-4 (Principle of Mathematical Induction)

NCERT Solutions Class 11 Maths Chapter-4 (Principle of Mathematical Induction)

NCERT Solutions Class 11 Maths from class 11th Students will get the answers of Chapter-4 (Principle of Mathematical Induction. This chapter will help you to learn the basics and you should expect at least one question in your exam from this chapter.
We have given the answers of all the questions of NCERT Board Mathematics Textbook in very easy language, which will be very easy for the students to understand and remember so that you can pass with good marks in your examination.
Solutions Class 11 Maths Chapter-4 (Principle of Mathematical Induction)
NCERT Question-Answer

Class 11 Mathematics

Chapter-4 (Principle of Mathematical Induction)

Questions and answers given in practice

Chapter-4 (Principle of Mathematical Induction)

Exercise 4.1

Q1. Prove the following by using the principle of mathematical induction for all n ∈ N: 

Answer.  Let the given statement be (), i.e., ():1+3+32++31=(31)2 For =1, we have (1):1=(31)2=312=22=1 , which is true  Let () be true for some positive integer , i.e., 1+3+32++31=(31)2 We shall now prove that (+1) is true.  Consider 1+3+32++31+3(+1)1=(1+3+32++31)+3 =(31)2+3=(31)+2.32 [using (i)] =(1+2)312 =3.312=3+112 

Q2. Prove the following by using the principle of mathematical induction for all n ∈ N: 

Answer.  Let the given statement be (), i.e., 13+23+33++3=((+1)2)2 For =1, we have  For =1, we have (1):13=1=(1(1+1)2=(1.22)2=12=1 , which is true.  Let () be true for some positive integer , l.e., 13+23+33++3=((+1)2)2 We shall now prove that (+1) is true.  Consider 13+23+33++3+(+1)3 =((+1)2)2+(+1)3[ Using ()] =2(+1)24+(+1)3=2(+1)2+4(+1)34=(+1)2{2+4(+1)}4 =(+1)2{2+4+4}4=(+1)2(+2)24=(+1)2(+1+1)24 =(13+23+33+.+3)+(+1)3=((+1)(+1+1)2)2 

Q3. Prove the following by using the principle of mathematical induction for all n ∈ N: 1+1(1+2)+1(1+2+3)++1(1+2+3+)=2(+1)


Answer.  Let the given statement be (), i.e.,  P(n): 1+11+2+11+2+3++11+2+3+=2+1 For =1, we have (1):1=2.11+1=22=1 Let () be true for some positive integer , i.e.,  1+11+2++11+2+3++11+2+3++=2+1............(i)  We shall now prove that P(+1) is true.  Consider 1+11+2+11+2+3++11+2+3+++11+2+2++(+1) =(1+11+2+11+2+3++11+2+3+.)+11+2+3+++(+1)=2+1+11+2+3+++(+1)[ Using (i) ] =2+1+1((+1)(+1+1)2) [1+2+3++=(+1)2] 

Q4. Prove the following by using the principle of mathematical induction for all n ∈ N: 1.2.3+2.3.4++(+1)(+2)=(+1)(+2)(+3)4


Answer.  Let the given statement be (), i.e., ():1.2.3+2.3.4++(+1)(+2)=(+1)(+2)(+3)4  For =1, we have (1):1.23=6=1(1+1)(1+2)(1+3)4=1.23.44=6 , which is true Let P(k) be true for some positive integer k, i.e., 1.2.3+2.3.4++(+1)(+2)=(+1)(+2)(+3)4 ……………(i)  We shall now prove that (+1) is true.  Consider 1.2.3+2.3.4++(+1)(+2)+(+1)(+2)(+3)={1.2.3+2.3.4++(+1)(+2)}+(+1)(+2)(+3) =(+1)(+2)(+3)4+(+1)(+2)(+3)[ Using ()]=(+1)(+2)(+3)(4+1)=(+1)(+2)(+3)(+4)4=(+1)(+1+1)(+1+2)(+1+3)4 

Q5. Prove the following by using the principle of mathematical induction for all n ∈ N: 1.3+2.32+3.33++3=(21)3+1+34


Answer.  Let the given statement be (), i.e., 1.3+2.32+3.3++3=(21)3+1+34 (): For =1, we have  (1):1.3=3=(2.11)31+1+34=32+34=124=3  Let () be true for some positive integer , i.e., 1.3+2.32+3.33++34=(21)3+1+34 We shall now prove that (+1) is true.  ……….(i) Consider 1.3+2.32+3.33++3+(+1)3+1=(1.3+2.32+3.33++.3)+(+1)3+1 =(21)3+1+34+(+1)3+1[ Using ()] =(21)33+1+3+4(+1)3+14=3+1{21+4(+1)}+34 =3+1{6+3}+34=3+13{2+1}+34 =3(+1)+1{2+1}+34={2(+1)1}3(+1)+1+34 Thus, P(k + 1) is true whenever P(k) is true. Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., n.

Q6. Prove the following by using the principle of mathematical induction for all n ∈ N: 

Answer. Let the given statement be P(n), i.e., P(n) : 1.2+2.3+3.4++(+1)=[(+1)(+2)3] For n = 1, we have P(1): 1.2=2=1(1+1)(1+2)3=1.2.33=2which is true. Let P(k) be true for some positive integer k, i.e., 1.2+2.3+3.4+.+.(+1)=[(+1)(+2)3] ……….(i) We shall now prove that P(k + 1) is true. Consider 1.2 + 2.3 + 3.4 + … + k.(k + 1) + (k + 1).(k + 2) = [1.2 + 2.3 + 3.4 + … + k.(k + 1)] + (k + 1).(k + 2) =(+1)(+2)3+(+1)(+2)[ Using (i)] =(+1)(+2)(3+1)=(+1)(+2)(+3)3=(+1)(+1+1)(+1+2)3 Thus, P(k + 1) is true whenever P(k) is true. Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., n.

Q7. Prove the following by using the principle of mathematical induction for all n ∈ N: 1.3+3.5+5.7++(21)(2+1)=(42+61)3


Answer. Let the given statement be P(n), i.e., P(n) : 1.3+3.5+5.7++(21)(2+1)=(42+61)3  For =1, we have (1):1.3=3=1(4.12+6.11)3=4+613=93=3 , which is true Let P(k) be true for sorne positive integer k, i.e., 1.3+3.5+5.7+.+(21)(2+1)=(42+61)3 ……..(i)  We shall now prove that (+1) is true.  Consider (1.3+3.5+5.7++(21)(2+1)+{2(+1)1}{2(+1)+1} =(42+61)3+(2+21)(2+2+1)[ Using (i) ] =(42+61)3+(2+1)(2+3)=(42+61)3+(42+8+3)=(42+61)+3(42+8+3)3=43+62+122+24+93=43+182+93+93=43+142+9+42+14+93 =(42+14+9)+1(42+14+9)3=(+1)(42+14+9)3 =(+1){42+8+4+6+61}3=(+1){4(2+2+1)+6(+1)1}3=(+1){4(+1)2+6(+1)1}3 Thus, P(k + 1) is true whenever P(k) is true. Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., n.

Q8. Prove the following by using the principle of mathematical induction for all n ∈ N: 1.2+2.22+3.23++.2=(1)2+1+2


Answer. Let the given statement be P(n), i.e., ():1.2+2.22+3.22++.2=(1)2+1+2 For n = 1, we have (1):1.2=2=(11)21+1+2=0+2=2, Let P(k) be true for some positive integer k, i.e., 1.2+2.22+3.22++k.2k=(k1)2k+1+2..(i) We shall now prove that P(k + 1) is true. Consider {1.2+2.22+3.23++.2}+(+1)2+1=(1)2+1+2+(+1)2+1=2+1{(1)+(+1)}+2=2+12+2=.2(+1)+1+2={(+1)1}2(+1)+1+2 Thus, P(k + 1) is true whenever P(k) is true. Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., n.

Q9. Prove the following by using the principle of mathematical induction for all n ∈ N: 

Answer. Let the given statement be P(n), i.e., P(n): 12+14+18++12=112 For n = 1, we have P(1): 12=1121=12, which is true Let P(k) be true for some positive integer k, i.e., 12+14+18++12=112 We shall now prove that P(k + 1) is true. Consider (12+14+18++12)+12+1=(112)+12+1 [using(i))] =112+122=112(112)=112(12)=112+1 Thus, P(k + 1) is true whenever P(k) is true. Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., n.

Q10. Prove the following by using the principle of mathematical induction for all n ∈ N: 

Answer. Let the given statement be P(n), i.e., P(n): 12.5+15.8+18.11++1(31)(3+2)=(6+4) For n = 1, we have (1)=12.5=110=16.1+4=110 , which is true. Let P(k) be true for some positive integer k, i.e., 12.5+15.8+18.11++1(31)(3+2)=6+4 ….(i) We shall now prove that P(k + 1) is true. Consider 12.5+15.8+18.11++1(31)(3+2)+1{3(+1)1}{3(+1)+2} =6+4+1(3+31)(3+3+2)[ Using (i)] =6+4+1(3+2)(3+5)=2(3+2)+1(3+2)(3+5)=1(3+2)(2+13+5)=1(3+2)((3+5)+22(3+5)) =1(3+2)(32+5+22(3+5))=1(3+2)((3+2)(+1)2(3+5))=(+1)6+10=(+1)6(+1)+4 Thus, P(k + 1) is true whenever P(k) is true. Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., n.

Q11. Prove the following by using the principle of mathematical induction for all n ∈ N: 11.2.3+12.3.4+13.4.5++1(+1)(+2)=(+3)4(+1)(+2)


Answer. Let the given statement be P(n),i.e., P(n): 11.2.3+12.3.4+13.4.5++1(+1)(+2)=(+3)4(+1)(+2) For n = 1, we have (1):1123=1(1+3)4(1+1)(1+2)=14423=1123, which is true Let P(k) be true for some positive integer k, i.e., 1123+1234+1345++1(+1)(+2)=(+3)4(+1)(+2) …..(i) We shall now prove that P(k + 1) is true. Consider [1123+1234+1345++1(+1)(+2)]+1(+1)(+2)(+3) =(+3)4(+1)(+2)+1(+1)(+2)(+3)[ Using (i)] =1(+1)(+2){(+3)4+1+3}=1(+1)(+2){(+3)2+44(+3)}=1(+1)(+2){(2+6+9)+44(+3)} =1(+1)(+2){3+62+9+44(+3)}=1(+1)(+2){3+22++42+8+44(+3)}=1(+1)(+2){(2+2+1)+4(2+2+1)4(+3)} =1(+1)(+2){(+1)2+4(+1)24(+3)}=(+1)2(+4)4(+1)(+2)(+3)=(+1){(+1)+3}4{(+1)+1}{(+1)+2} Thus, P(k + 1) is true whenever P(k) is true. Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., n.

Q12. Prove the following by using the principle of mathematical induction for all n ∈ N: 

Answer. Let the given statement be P(n), i.e., P(n): ++2++1=(1)1 For n = 1, we have P(1):=(11)(1)=, which is true. Let P(k) be true for some positive integer k, i.e., ++2+.+1=(1)1 …….(i) We shall now prove that P(k + 1) is true. Consider {++2++1}+(+1)1=(1)1+ [ Using(i) ] =(1)+(1)1=(1)++11 =++11=+11=(+11)1 Thus, P(k + 1) is true whenever P(k) is true. Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., n.

Q13. Prove the following by using the principle of mathematical induction for all n ∈ N: (1+31)(1+54)(1+79)(1+(2+1)2)=(+1)2


Answer. Let the given statement be P(n), i.e., P():(1+31)(1+54)(1+79)(1+(2+1)2)=(+1)2 For n = 1, we have P(1):(1+31)=4=(1+1)2=22=4, Let P(k) be true for some positive integer k, i.e., (1+31)(1+54)(1+79)(1+(2+1)2)=(+1)2 ……(1) We shall now prove that P(k + 1) is true. Consider [(1+31)(1+54)(1+79)(1+(2+1)2)]{1+{2(+1)+1}(+1)2} =(+1)2(1+2(+1)+1(+1)2) [ (Using (1) ] =(+1)2[(+1)2+2(+1)+1(+1)2]=(+1)2+2(+1)+1={(+1)+1}2 Thus, P(k + 1) is true whenever P(k) is true. Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., n.

Q14. Prove the following by using the principle of mathematical induction for all n ∈ N: (1+11)(1+12)(1+13)(1+1)=(+1)


Answer. Let the given statement be P(n), i.e., P(n): (1+11)(1+12)(1+13)(1+1)=(+1) For n = 1, we have P(1):(1+11)=2=(1+1), which is true Let P(k) be true for some positive integer k, i.e., P():(1+11)(1+12)(1+13)(1+1)=(+1) ……….(1) We shall now prove that P(k + 1) is true. Consider [(1+11)(1+12)(1+13)(1+1)](1+1+1) =(+1)(1+1+1) [ Using(1) ] =(+1)((+1)+1(+1))=(+1)+1 Thus, P(k + 1) is true whenever P(k) is true. Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., n.

Q15. Prove the following by using the principle of mathematical induction for all n ∈ N: 

Answer. Let the given statement be P(n), i.e., ()=12+32+52++(21)2=(21)(2+1)3 For =1, we have (1)=12=1=1(2.11)(2.1+1)3=1.1.33=1, which is true.  Let P(k) be true for some positive integer k, i.e., ()=12+32+52++(21)2=(21)(2+1)3 …….(1) We shall now prove that P(k + 1) is true. Consider {12+32+52++(21)2}+{2(+1)1}2 =(21)(2+1)3+(2+21)2 [ Using (1)] =(21)(2+1)3+(2+1)2=(21)(2+1)+3(2+1)23=(2+1){(21)+3(2+1)}3=(2+1){22+6+3}3 =(2+1){22+5+3}3=(2+1){22+2+3+3}3=(2+1){2(+1)+3(+1)}3 =(2+1)(+1)(2+3)3=(+1){2(+1)1}{2(+1)+1}3 Thus, P(k + 1) is true whenever P(k) is true. Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., n.

Q16. Prove the following by using the principle of mathematical induction for all n ∈ N: 11.4+14.7+17.10++1(32)(3+1)=(3+1)


Answer. Let the given statement be P(n), i.e., ():11.4+14.7+17.10++1(32)(3+1)=(3+1) For =1, we have (1)=11.4=13.1+1=14=11.4, which is true.  Let P(k) be true for some positive integer k, i.e., ()=11.4+14.7+17.10++1(32)(3+1)=3+1 ………..(1) We shall now prove that P(k + 1) is true. Consider {11.4+14.7+17.10++1(32)(3+1)}+1{3(+1)2}{3(+1)+1} =3+1+1(3+1)(3+4) [ Using (1)] =1(3+1){+1(3+4)}=1(3+1){(3+4)+1(3+4)}=1(3+1){32+4+1(3+4)} =1(3+1){32+3++1(3+4)}=(3+1)(+1)(3+1)(3+4)=(+1)3(+1)+1 Thus, P(k + 1) is true whenever P(k) is true. Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., n.

Q17. Prove the following by using the principle of mathematical induction for all n ∈ N: 13.5+15.7+17.9++1(2+1)(2+3)=3(2+3)


Answer. Let the given statement be P(n), i.e., ():13.5+15.7+17.9++1(2+1)(2+3)=3(2+3) For n = 1, we have (1):13.5=13(2.1+3)=13.5 , which is true. Let P(k) be true for some positive integer k, i.e., ():13.5+15.7+17.9++1(2+1)(2+3)=3(2+3) ……(1) We shall now prove that P(k + 1) is true. Consider [13.5+15.7+17.9++1(2+1)(2+3)]+1{2(+1)+1}{2(+1)+3} =3(2+3)+1(2+3)(2+5) [Using(1)] =1(2+3)[3+1(2+5)]=1(2+3)[(2+5)+33(2+5)]=1(2+3)[22+5+33(2+5)] =1(2+3)[22+2+3+33(2+5)]=1(2+3)[2(+1)+3(+1)3(2+5)]=(+1)(2+3)3(2+3)(2+5)=(+1)3{2(+1)+3} Thus, P(k + 1) is true whenever P(k) is true. Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., n.

Q18. Prove the following by using the principle of mathematical induction for all n ∈ N: 1+2+3++<18(2+1)2


Answer. Let the given statement be P(n), i.e., P():1+2+3++<18(2+1)2 It can be noted that P(n) is true for n = 1 since 1<18(2.1+1)2=98 Let P(k) be true for some positive integer k, i.e., 1+2++<18(2+1)2 ……(1) We shall now prove that P(k + 1) is true whenever P(k) is true. Consider (1+2++)+(+1)<1(2+1)2+(+1) [ Using (1)] <18{(2+1)2+8(+1)}<18{42+4+1+8+8}<18{42+12+9}<18(2+3)2<18{2(+1)+1}2 Hence, (1+2+3++)+(+1)<18(2+1)2+(+1) Thus, P(k + 1) is true whenever P(k) is true. Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., n.

Q19. Prove the following by using the principle of mathematical induction for all n ∈ N: (+1)(+5) is a multiple of 3


Answer. Let the given statement be P(n), i.e., P(n): n (n + 1) (n + 5), which is a multiple of 3. It can be noted that P(n) is true for n = 1 since 1 (1 + 1) (1 + 5) = 12, which is a multiple of 3. Let P(k) be true for some positive integer k, i.e., k (k + 1) (k + 5) is a multiple of 3. ∴k (k + 1) (k + 5) = 3m, where m ∈ N … (1) We shall now prove that P(k + 1) is true whenever P(k) is true. Consider (+1){(+1)+1}{(+1)+5}=(+1)(+2){(+5)+1}=(+1)(+2)(+5)+(+1)(+2)={(+1)(+5)+2(+1)(+5)}=3+(+1){2(+5)+(+2)}=3+(+1){2+10++2}=3+(+1){2+12)=3+3(+1)(+4) =3{+(+1)(+4)}=3×, where ={+(+1)(+4)} is some natural number  Therefore, (+1){(+1)+1}{(+1)+5} is a multiple of 3. Thus, P(k + 1) is true whenever P(k) is true. Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., n.

Q20. Prove the following by using the principle of mathematical induction for all n ∈ N: 

Answer. Let the given statement be P(n), i.e., P(n):102n1+1 is divisible by 11. It can be observed that P(n) is true for n=1 since P(1)=102.11+1=11, which is divisible by 11. Let P(k) be true for some positive integer k, i.e., 102k1+1 is divisible by 11.102k1+1=11m, where mN(1) We shall now prove that P(k + 1) is true whenever P(k) is true. Consider 102(+1)1+1=102+21+1=102+1+1=102(1021+11)+1=102(1021+1)102+1 =10211100+1 [ Using (1)] Thus, P(k + 1) is true whenever P(k) is true. Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., n.

Q21. Prove the following by using the principle of mathematical induction for all n ∈ N: 23 is divisible by +


Answer. Let the given statement be P(n), i.e., ():22 is divisible by + .  It can be observed that () is true for =1 .  This is so because 2×12×1=22=(+)() is divisible by (+). Let P(k) be true for some positive integer k, i.e., 22 is divisible by +.22=(+), where (1) We shall now prove that P(k + 1) is true whenever P(k) is true. Consider 2(+1)2(+1)=2222=2(22+2)22 =2{(+)+2}22[ Using (1)] =(+)2+2222=(+)2+2(22)=(+)2+2(+)()=(+){2+2()}, which is a factor of (+) Thus, P(k + 1) is true whenever P(k) is true. Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., n.

Q22. Prove the following by using the principle of mathematical induction for all n ∈ N: 32+289 is divisible by 8


Answer. Let the given statement be P(n), i.e., P(n):32n+28n9 is divisible by 8  It can be observed that () is true for =1 since 32×1+28×19=64, which is divisible by 8 .  Let P(k) be true for some positive integer k, i.e., 32+289 is divisible by 8 . 32+289=8; where (1) We shall now prove that P(k + 1) is true whenever P(k) is true. Consider 32(+1)+28(+1)9=32+232889=32(32+289+8+9)817=32(32+289)+32(8+9)817=9.8+9(8+9)817 =9.8+9(8+9)817=9.8+72+81817=9.8+64+64=8(9+8+8)=8, where =(9+8+8) is a natural number  Therefore, 32(+1)+28(+1)9 is divisible by 8 .  Thus, P(k + 1) is true whenever P(k) is true. Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., n.

Q23. Prove the following by using the principle of mathematical induction for all n ∈ N: 4114 is a multiple of 27


Answer. Let the given statement be P(n), i.e., P(n):41n14n is a multiple of 27 It can be observed that P(n) is true for n = 1 since 411141=27 which is a multiple of 27. Let P(k) be true for some positive integer k, i.e., 41k14k is a multiple of 2741k14k=27m, where mN (1)  We shall now prove that P(k + 1) is true whenever P(k) is true. Consider 41+114+1=41411414=41(4114+14)1414=41(4114)+41.141414=41.27+14(4114) =41.27+27.14=27(4114) =27×, where =(4114) is a natural number  Therefore, 41+114+1 is a multiple of 27 Thus, P(k + 1) is true whenever P(k) is true. Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., n.

Q24. Prove the following by using the principle of mathematical induction for all n ∈ N: 

Answer. Let the given statement be P(n), i.e., P(n):(2n+7)<(n+3)2  It can be observed that P(n) is true for n=1 since 2.1+7=9<(1+3)2=16, which is true.  Let P(k) be true for some positive integer k, i.e., (2+7)<(+3)2(1) We shall now prove that P(k + 1) is true whenever P(k) is true. Consider {2(+1)+7}=(2+7)+2 {2(k+1)+7}=(2k+7)+2<(k+3)2+2[ using (1)] 2(k+1)+7<k2+6k+9+22(k+1)+7<k2+6k+11 Now, k2+6k+11<k2+8k+162(k+1)+7<(k+4)22(k+1)+7<{(k+1)+3}2 Thus, P(k + 1) is true whenever P(k) is true. Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., n.