NCERT Solutions Class 11 Maths Chapter-3 (Trigonometric Functions)
NCERT Solutions Class 11 Maths from class 11th Students will get the answers of Chapter-3 (Trigonometric Functions) . This chapter will help you to learn the basics and you should expect at least one question in your exam from this chapter.
We have given the answers of all the questions of NCERT Board Mathematics Textbook in very easy language, which will be very easy for the students to understand and remember so that you can pass with good marks in your examination.NCERT Question-Answer
Class 11 Mathematics
Chapter-3 (Trigonometric Functions)
Questions and answers given in practice
Chapter-3 (Trigonometric Functions)
Exercise 3.1
Question 1:
Find the radian measures corresponding to the following degree measures:
(i) 25°
(ii) – 47° 30′
(iii) 240°
(iv) 520°
Answer. (i) 25∘ We know that 180∘=π radian ∴25∘=π180×25 radian =5π36 radian (ii) −47∘30′−47∘30′=−4712=−952 Since 180∘=π radian (iii) 240∘ We know that 180∘=π radian ∴240∘=π180×240 radian =43π radian (iv) 520∘ We know that 180∘=π radian ∴520∘=π180×520 radian =26π9 radian
Q2. Find the degree measures corresponding to the following radian measures (Use π=227). (i) 1116 (ii) −4 (iii) 5π3 (iv) 7π6
Answer. (i) 1116 We know that π radian =180∘ ∴1116radain=180π×1116 degree =45×11π×4 degree =45×11×722×4 deg ree =3158 degree =3938 deg ree =39∘+3×608 min utes [1∘=60∘]=39∘+22′+12 min utes =39∘22′30′′[1′=60′′] (ii)−4 We know that π radian =180∘−4 radian =180π×(−4) deg ree =180×7(−4)22 degree =−252011 deg ree =−229111 degree =−229∘+1×6011 min utes [1∘=60∘] =−229∘51227n[1′=60′′] (iii) 5π3 We know that π radlan =180∘∴5π3 radian =180π×5π3 degree =300∘ (iv) 7π6 We know that π radian =180∘∴7π6 radian =180π×7π6=210∘
Question 3:
A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?
Answer:
Number of revolutions made by the wheel in 1 minute = 360
∴ Number of revolutions made by the wheel in 1 second = 36060=6 Hence,
In one complete revolution, the wheel turns an angle of 2π radian.
Hence, in 6 complete revolutions, it will turn an angle of 6 × 2π radian, i.e., 12π radian
Thus, in one second, the wheel turns an angle of 12π radian.
Question 4:
Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm y an arc of length 22 cm (Use π=227
).
Answer. We know that in a circle of radius r unit, if an arc of length l unit subtends and angle θ radian at the centre, then θ=1r Therefore, for r = 100 cm, l = 22 cm, we have θ=22100 radian =180π×22100 deg ree =180×7×2222×100 deg ree =12610 deg ree =1235 deg ree =12∘36∘[1∘=60′] Thus, the required angle is 12∘36′.
Question 5:
In a circle of diameter 40 cm, the length of a chord is 20 cm. Find the length of minor arc of the chord.
Answer. Diameter of the circle = 40 cm Radius of the circle = 402cm=20cm Let AB be a chord (length = 20 cm) of the circle. In △OAB,OA=OB= Radius of circle =20cm Also, AB=20cm Thus, △OAB is an equilateral triangle. ∴θ=60∘=π3 We know that in a circle of radius r unit, if an arc of length l unit subtends an angle θ radian at the centre, then θ=lr π3=˜AB20⇒˜AB=20π3cm Thus, the length of the minor arc of the chord is 20π3cm.
Question 6:
If in two circles, arcs of the same length subtend angles 60° and 75° at the centre, find the ratio of their radii.
Answer. Let the radii of the two circles be r1 and r2 . Let an arc of length l subtend an angle of 60∘ at the centre of the circle of radius r1 , while let an arc of length l subtend an angle of 60∘ at the centre of the circle of radius r2. Now, 60∘=π3 radian and 75∘=5π12 We know that in a circle of radius r unit, if an arc of length l unit subtends an angle θ radian at the centre, then θ=lr or l=rθ ∴l=r1π3 and l=r25π12⇒r1π3=r25π12⇒r1=r254⇒r1r2=54 Thus, the ratio of the radii is 5 : 4.
Question 7:
Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length
(i) 10 cm
(ii) 15 cm
(iii) 21 cm.
Answer. We know that in a circle of radius r unit, if an arc of length l unit subtends an angle θ radian at the centre, then θ=lr. It is given that r = 75 cm (i) Here, l = 10 cm θ=1075 radian =215 radian (ii) Here, l = 15 cm θ=1575 radian =15 radian (iii) Here, l = 21 cm θ=2175 radian =725 radian
Exercise 3.2
Question 1:
Find the values of other five trigonometric functions if cos x = – \(\frac{1}{2}\) x lies in third quadrant.
Answer:
Question 2:
Find the values of other five trigonometric functions if sin x=35 , x lies in second quadrant.
Answer. sinx=35cosecx=1sinx=1(35)=53sin2x+cos2x=1⇒cos2x=1−sin2x⇒cos2x=1−(35)2 ⇒cos2x=1−925⇒cos2x=1625⇒cosx=±45 Since x lies in the 2nd quadrant, the value of cos x will be negative ∴cosx=−45secx=1cosx=1(−45)=−54tanx=sinxcosx=(35)cosx=(35)cosx=(−45)(−45)=−34cotx=1tanx=−43.
Question 3:
Find the values of other five trigonometric functions if cot x =34 , x lies in third quadrant.
Answer. cotx=34tanx=1cotx=1(34)=431+tan2x=sec2x ⇒1+(43)2=sec2x⇒1+169=sec2x⇒259=sec2x⇒secx=±53 Since, x lies in the 3rd quadrant, the value of sec x will be negative. ∴secx=−53cosx=1secx=1(−53)=−35tanx=sinxcosx⇒43=sinx(−35) ⇒sinx=(43)×(−35)=−45cosecx=1sinx=−54
Question 4:
Find the values of other five trigonometric functions if secx=135sec�=135 , x lies in fourth quadrant.
Answer. secx=135cosx=1secx=1(135)=513sin2x+cos2x=1⇒sin2x=1−cos2x ⇒sin2x=1−(513)2⇒sin2x=1−25169=144169⇒sinx=±1213 Since x lies in the 4th quadrant, the value of sin x will be negative. ∴sinx=−1213cosecx=1sinx=1(−1213)=−1312tanx=sinxcosx=(−1213)cosx=(−1213)(513)=−125cotx=1tanx=1(−125)=−125
Question 5:Find the values of other five trigonometric functions if
tanx=−512tan�=−512 , x lies in second quadrant.Answer. tanx=−512cotx=1tanx=1(−512)=−1251+tan2x=sec2x⇒1+(−512)2=sec2x ⇒1+25144=sec2x⇒169144=sec2x⇒secx=±1312 Since x lies in the 2nd quadrant, the value of sec x will be negative. ∴secx=−1312cosx=1secx=1(−1312)=−1213tanx=sinxcosx⇒−512=sinx(−1213) ⇒sinx=(−512)×(−1213)=513cosecx=1sinx=1(513)=135Question 6:
Find the value of the trigonometric function sin 765°.
Ans:
It is known that the values of sin x repeat after an interval of 2π or 360°.
Question 7:
Find the value of the trigonometric function cosec (- 1410°)
Ans:
It is known that the values of cosec x repeat after an interval of 2π or 360°.
∴ cosec (- 1410°) = cosec (- 1410° + 4 x 360°)
= cosec (- 1410° + 1440°)
= cosec 30° = 2.
Question 8:
Find the value of the trigonometric function in tan19π3.
Ans:
It is known that the values of tan x repeat after an interval
of π or 180∘ . ∴tan19π3=tan613π=tan(6π+π3)=tanπ3=tan60∘=√3.
Question 9:
Find the value of the trigonometric function in sin(−11π3).
Ans .It is known that the values of cot x repeat after an interval of
π or 360∘ . ∴sin(−11π3)=sin(−11π3+2×2π)=sin(π3)=√32Question 10:
Find the value of the trigonometric function in cot(−15π4).
Ans:
It is known that the values of cot x repeat after an interval of
π or 180∘ . ∴cot(−15π4)=cot(−15π4+4π)=cotπ4=1.
Exercise 3.3
Question 1:Prove that: sin2π6+cos2π3−tan2π4=−12
Answer. L. H.S. =sin2π6+cos2π3−tan2π4=(12)2+(12)2−(1)2=14+14−1=−12= R.H.S.
Q2. Prove that: 2sin2π6+cosec27π6cos2π3=32
Ans
Q3. Prove that: cot2π6+cosec5π6+3tan2π6=6
Answer. L.H.S. =cot2π6+cosec5π6+3tan2π6=(√3)2+coscc(π−π6)+3(1√3)2 =3+cosecπ6+3×13=3+2+1=6=RHS
Q4. Prove that: 2sin23π4+2cos2π4+2sec2π3=10
Answer. L.H.S=2sin23π4+2cos2π4+2sec2π3 =2{sin(π−π4)}2+2(1√2)2+2(2)2=2{sinπ4}2+2×12+8=2(1√2)2+1+8=1+1+8=10= R.H.S
Question 5:
Find the value of: (i) sin 75°,
(ii) tan 15°
Answer. (i)sin75∘=sin(45∘+30∘)=sin45∘cos30∘+cos45∘sin30∘[sin(x+y)=sinxcosy+cosxsiny]=(1√2)(√32)+(1√2)(12)=√32√2+12√2=√3+12√2 (ii) tan15∘=tan(45∘−30∘) =tan45∘−tan30∘1+tan45∘tan30∘[tan(x−y)=tanx−tany1+tanxtany] =1−1√31+1(1√3)=√3−1√3√3=√3−1√3+1=(√3−1)2(√3+1)(√3−1)=3+1−2√3(√3)2−(1)2=4−2√33−1=2−√3
Q6. Prove the following: cos(π4−x)cos(π4−y)−sin(π4−x)sin(π4−y)=sin(x+y)
Answer. cos(π4−x)cos(π4−y)−sin(π4−x)sin(π4−y)=12[2cos(π4−x)cos(π4−y)]+12[−2sin(π4−x)sin(π4−y)]=12[cos{(π4−x)+(π4−y)}+cos{(π4−x)−(π4−y)}]+12[cos{(π4−x)+(π4−y)}−cos{(π4−x)−(π4−y)}] [∵2cosAcosB=cos(A+B)+cos(A−B)−2sinAsinB=cos(A+B)−cos(A−B)] =2×12[cos{(π4−x)+(π4−y)}]=cos[π2−(x+y)]=sin(x+y)=R.H.SQ7. Prove the following: tan(π4+x)tan(π4−x)=(1+tanx1−tanx)2
Answer. It is known that tan(A+B)=tanA+tanB1−tanAtanB and tan(A−B)=tanA−tanB1+tanAtanB tan(π4+x)tan(π4−x)=(tanπ4+tanx1−tanπ4tanx)(tanπ4−tanx1+tanπ4tanx)=(1+tanx1−tanx)(1−tanx1+tanx)=(1+tanx1−tanx)2=R.H.S.
Q8. Prove the following: cos(π+x)cos(−x)sin(π−x)cos(π2+x)=cot2x
Answer. L.H.S. =cos(π+x)cos(−x)sin(π−x)cos(π2+x)=[−cosx][cosx](sinx)(−sinx]=−cos2x−cot2x=cot2x=R.H.S
Q9. Prove the following: cos(3π2+x)cos(2π+x)[cot(3π2−x)+cot(2π+x)]=1
Answer. L.H.S =cos(3π2+x)cos(2π+x)[cot(3π2−x)+cot(2π+x)] =sinxcosx[tanx+cotx]=sinxcosx(sinxcosx+cosxsinx)=(sinxcosx)[sin2x+cos2xsinxcosx]=1=R.H.S.
Q10.Prove that: sin (n + 1) x sin (n + 2) x + cos (n + 1) x cos (n + 2) x = cos x
Answer. L.H.S = sin(n+1)xsin(n+2)x+cos(n+1)xcos(n+2)x =12[2sin(n+1)xsin(n+2)x+2cos(n+1)xcos(n+2)x] =12[cos{(n+1)x−(n+2)x}−cos{(n+1)x+(n+2)x}+cos{(n+1)x+(n+2)x}+cos{(n+1)x−(n+2)x}] [∵−2sinAsinB=cos(A+B)−cos(A−B)2cosAcosB=cos(A+B)+cos(A−B)] =12×2cos{(n+1)x−(n+2)x}=cos(−x)=cosx=R.HS
Q11. Prove the following: cos(3π4+x)−cos(3π4−x)=−√2sinx
Answer. It is known that cosA−cosB=−2sin(A+B2)⋅sin(A−B2) ∴ = cos(3π4+x)−cos(3π4−x) =−2sin{(3π4+x)+(3π4−x)2}⋅sin{(3π4+x)−(3π4−x)2} =−2sin(3π4)sinx=−2sin(π−π4)sinx=−2sinπ4sinx=−2×1√2×sinx=−√2sinx=R.H.S
Q12. Prove the following: sin26x−sin24x=sin2xsin10x
Answer. It is known that sinA+sinB=2sin(A+B2)cos(A−B2),sinA−sinB=2cos(A+B2)sin(A−B2) ∴L.H.S.=sin26x−sin24x=(sin6x+sin4x)(sin6x−sin4x) =[2sin(6x+4x2)cos(6x−4x2)][2cos(6x+4x2)⋅sin(6x−4x2)] =(2sin5xcosx)(2cos5xsinx)=(2sin5xcos5x)(2sinxcosx)=sin10xsin2x = R. H . S.
Question 13:
Prove that: cos2 2x cos2 6x = sin 4x sin 8x
Answer. It is known that cosA+cosB=2cos(A+B2)cos(A−B2),cosA−cosB=−2sin(A+B2)sin(A−B2) ∴L.H⋅S,=cos22x−cos26x=(cos2x+cos6x)(cos2x−6x) =[2cos(2x+6x2)cos(2x−6x2)][−2sin(2x+6x2)sin(2x−6x)2]=[2cos4xcos(−2x)][−2sin4xsin(−2x)] =[2cos4xcos2x][−2sin4x(−sin2x)]=(2sin4xcos4x)(2sin2xcos2x)=sin8xsin4x=R.H.S.
Q14.Prove that: sin 2x + 2 sin 4x + sin 6x = 4 cos2 x sin 4x
Answer. LH.S.=sin2x+2sin4x+sin6x=[sin2x+sin6x]+2sin4x=[2sin(2x+6x2)(2x−6x2)]+2sin4x [∵sinA+sinB=2sin(A+B2)cos(A−B2)] =2sin4xcos(−2x)+2sin4x=2sin4xcos2x+2sin4x=2sin4x(cos2x+1)=2sin4x(2cos2x−1+1)=2sin4x(2cos2x)=4cos2xsin4x=R.H.S
Q15prove that:cot 4x (sinve 5x + sin 3x) = cot x (sin 5x – sin 3x)
Answer. L. H.S =cot4x(sin5x+sin3x)=cot4xsin4x[2sin(5x+3x2)cos(5x−3x2)][∵sinA+sinB=2sin(A+B2)cos(A−B2)] =(cos4xsin4x)[2sin4xcosx]=2cos4xcosxR.4.5.=cotx(sin5x−sin3x)=cosxsinx[2cos(5x+3x2)sin(5x−3x2)][∵sinA−sinB=2cos(A+B2)sin(A−B2)] =cosxsinx[2cos4xsinx]=2cos4x⋅cosxL⋅H⋅S.=R.H.S
Q16. Prove the following: cos9x−cos5xsin17x−sin3x=−sin2xcos10x
Answer. It is known that cosA−cosB=−2sin(A+B2)sin(A−B2),sinA−sinB=2cos(A+B2)sin(A−B2) ∴L.H.S=cos9x−cos5xsin17x−sin3x =−2sin(9x+5x2)⋅sin(9x−5x2)2cos(17x+3x2)⋅sin(17x−3x2) =−2sin7x⋅sin2x2cos10x⋅sin7x=−sin2xcos10x=R.H.S
Q17. Prove the following: sin5x+sin3xcos5x+cos3x=tan4x
Answer. It is known that sinA+sinB=2sin(A+B2)cos(A−B2),cosA+cosB=2cos(A+B2)cos(A−B2) ∴L⋅H⋅S.=sin5x+sin3xcos5x+cos3x 2sin(5x+3x2)⋅cos(5x−3x2)2cos(5x+3x2)⋅cos(5x−3x2)=2sin4x⋅cosx2cos4x⋅cosx=sin4xcos4x = tan 4x = R.H.S
Q18. Prove the following: sinx−sinycosx+cosy=tanx−y2
Answer. It is known that sinA−sinB=2cos(A+B2)sin(A−B2),cosA+cosB=2cos(A+B2)cos(A−B2) ∴ = =sinx−sinycosx+cosy =2cos(x+y2)⋅sin(x−y2)2cos(x+y2)⋅cos(x−y2) sin(x−y2)=sin(x−y2)cos(x−y2)=tan(x−y2)=R.H.S
Q19. Prove the following: sinx+sin3xcosx+cos3x=tan2x
Answer. It is known that sinA+sinB=2sin(A+B2)cos(A−B2),cosA+cosB=2cos(A+B2)cos(A−B2) ∴L.H.S.=sinx+sin3xcosx+cos3x =2sin(x+3x2)cos(x−3x2)2cos(x+3x2)cos(x−3x2)=sin2xcos2x=tan2x=R.HS
Q20. Prove the following: sinx−sin3xsin2x−cos2x=2sinx
Answer. It is known that sinA−sinB=2cos(A+B2)sin(A−B2),cos2A−sin2A=cos2A ∴L⋅H⋅S=sinx−sin3xsin2x−cos2x 2cos(x+3x2)sin(x−3x2)=2cos2xsin(−x)−cos2x=−2×(−sinx)=2sinx=R.H.S
Q21. Prove the following: cos4x+cos3x+cos2xsin4x+sin3x+sin2x=cot3x
Answer. L.H.S =cos4x+cos3x+cos2xsin4x+sin3x+sin2x =(cos4x+cos2x)+cos3x(sin4x+sin2x)+sin3x2cos(4x+2x2)cos(4x−2x2)+cos3x=2sin(4x+2x2)cos(4x−2x2)+sin3x [∵cosA+cosB=2cos(A+B2)cos(A−B2),sinA+sinB=2sin(A+B2)cos(A−B2)] =2cos3xcosx+cos3x2sin3xcosx+sin3x=cos3x(2cosx+1)sin3x(2cosx+1)=cot3x=R.H.S
Q22. Prove the following: cotxcot2x−cot2xcot3x−cot3xcotx=1
Answer. L. H.S. =cotxcot2x−cot2xcot3x−cot3xcotx=cotxcot2x−cot3x(cot2x+cotx)=cotxcot2x−cot(2x+x)(cot2x+cotx)=cotxcot2x−[cot2xcotx−1cotx+cot2x](cot2x+cotx) [∵cot(A+B)=cotAcotB−1cotA+cotB]=cotxcot2x−(cot2xcotx−1)=1=R.H.S
Q23. Prove the following: tan4x=4tanx(1−tan2x)1−6tan2x+tan4x
Answer. It is known that tan2A=2tanA1−tan2A ∴L H.S. =tan4x=tan2(2x)=2tan2x1−tan2(2x)=2(2tanx1−tan2x)1−(2tanx1−tan2x)2 =(4tanx1−tan2x)1−4tan2x(1−tan2x)2] =(4tanx1−tan2x)⎡⎣(1−tan2x)2−4tan2x(1−tan2x)2⎤⎦ =4tanx(1−tan2x)1+tan4x−2tan2x−4tan2x=4tanx(1−tan2x)1−6tan2x+tan4x=RHS
Q24.Prove that: cos 4x = 1-8 sin2 x cos2 x
Answer. L.H.S. =cos4x=cos2(2x)=1−2sin22x[cos2A=1−2sin2A]=1−2(2sinxcos2x)2[sin2A=2sinAcosA]=1−8sin2xcos2x= R.H.S.
Q25.Prove that: cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1
Ans:
We know that: cos 3x = 4 cos3 x – 3cos x
On replacing x by 2x, we get
cos 3(2x) = 4 cos3 (2x) – 3 cos 2x
⇒ cos 6x = 4 (2cos2 x – 1)3 – 3 (2cos2 x – 1)
[∵ cos 2x = 2cos2 x – 1]
= 4 [8 cos6 x – 12 cos4 x + 6 cos2 x – 1] – 6 cos2 x + 3
[∵ (a – b)3 = a3 – 3a2b + 3ab2 – b3]
= 32 cos6 x – 48 cos4 x + 24 cos2 x – 4 – 6 cos2 x + 3
⇒ cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1
Hence proved.Exercise 3.4
Question 1:
Find the principal and general solutions of the equation, tan x = √3
Answer. tanx=√3 It is known that tanπ3=√3 and tan (4π3)=tan(π+π3)=tanπ3=√3 Therefore, the principal solutions are x = π3 and 4π3 Now, tan x = tanπ3 ⇒x=nπ+π3, where n∈Z Therefore, the general solution is x=nπ+π3, where n∈Z.
Question 2:
Find the principal and general solutions of the equation: sec x = 2
Answer. Sec x = 2 It is known that secπ3=2 and sec5π3=sec(2π−π3)=secπ3=2 Therefore, the principal solutions are x = π3 and 5π3. Now 7secx=secπ3⇒cosx=cosπ3⇒x=2nπ±π3, where n∈Z Therefore, the general solution is x=2nπ±π3, where n∈Z
Question 3:Find the principal and general solutions of the equation cot cot x = – √3.
Answer. Cot x = −√3 It is known that cotπ6=√3 ∴cot(π−π6)=−cotπ6=−√3 and cot(2π−π6)=−cotπ6=−√3 i.e., cot5π6=−√3 and cot11π6=−√3 Therefore, the principal solutions are x = 5π6 and 11π6 Now, cotx=cot5π6 ⇒tanx=tan5π6[cotx=1tanx] ⇒x=nπ+5π6, where n∈Z Therefore, the general solution is x=nπ+5π6, where n∈Z.
Question 4:
Find the principal and general solutions of cosec x = – 2
Answer. Cosec x = -2 It is known that cosecπ6=2∴coscc(π+π6)=−cosccπ6=−2 and cosec (2π−π6)=−cosccπ6=−2 cosec7π6=−2 and cosec11π6=−2 Therefore, the principal solutions are x = 7π6 and 11π6 Now, cosec x = cosec7π6 ⇒sinx=sin7π6[cosecx=1sinx] ⇒x=nπ+(−1)n7π6, where n∈Z Therefore, the general solution is x=nπ+(−1)n7π6, where n∈Z.
Question 5:
Find the general solution of the equation: cos 4x = cos 2x
Answer. cos4x=cos2x⇒cos4x−cos2x=0⇒−2sin(4x+2x2)sin(4x−2x2)=0 [∵cosA−cosB=−2sin(A+B2)sin(A−B2)]⇒sin3xsinx=0⇒sin3x=0 or sinx=0∴3x=nπ⇒x=nπ3 or x=nπ, where n∈Z
Question 6:
Find the general solution of the equation cos 3x + cosx – cos 2x = 0
Answer. cos3x+cosx−cos2x=0⇒2cos(3x+x2)cos(3x−x2)−cos2x=0[cosA+cosB=2cos(A+B2)cos(A−B2)] ⇒2cos2xcosx−cos2x=0⇒cos2x(2cosx−1)=0 ⇒cos2x=0 or 2cosx−1=0⇒cos2x=0 or cosx=12 ∴2x=(2n+1)π2 or cosx=cosπ3, where n∈Z⇒x=(2n+1)π4 or x=2nπ±π3, where n∈Z
Question 7:
Find the general solution of the equation sin 2x + cos x = 0
Answer. sin2x+cosx=0⇒2sinxcosx+cosx=0⇒cosx(2sinx+1)=0⇒cosx=0 or 2sinx+1=0 Now, cosx=0⇒cosx=(2n+1)π2, where n∈Z2sinx+1=0⇒sinx=−12=−sinπ6=sin(π+π6)=sin(π+π6)=sin7π6 ⇒x=nπ+(−1)n7π6, where n∈Z Therefore, the general solution is (2n+1)π2 or nπ+(−1)n7π6,n∈Z.
Question 8:
Find the general solution of the equation sec2 2x = 1 – tan 2x.
Answer. sec22x=1−tan2x⇒1+tan22x=1−tan2x⇒tan22x+tan2x=0⇒tan2x(tan2x+1)=0⇒tan2x=0 or tan2x+1=0 Now, tan2x=0⇒tan2x=tan0⇒2x=nπ+0, where n∈Z⇒x=nπ2, where n∈Z tan 2x+1=0 ⇒tan2x=−1=−tanπ4=tan(π−π4)=tan3π4⇒2x=nπ+3π4, where n∈Z⇒x=nπ2+3π8, where n∈Z Therefore, the general solution is nπ2 or nπ2+3π8,n∈Z.
Question 9:
Find the general solution of the equation sin x + sin 3x + sin 5x = 0
Answer. sin x + sin 3x + sin 5x = 0 (sinx+sin5x)+sin3x=0 ⇒[2sin(x+5x2)cos(x−5x2)]+sin3x=0[sinA+sinB=2sin(A+B2)cos(A−B2)] ⇒2sin3xcos(−2x)+sin3x=0⇒2sin3xcos2x+sin3x=0⇒sin3x(2cos2x+1)=0⇒sin3x=0 or 2cos2x+1=0 Now, sin3x=0⇒3x=nπ, where n∈Z i.c., x=nπ3, where n∈Z2cos2x+1=0⇒cos2x=−12=−cosπ3=cos(π−π3) ⇒cos2x=cos2π3⇒2x=2nπ±2π3, where n∈Z⇒x=nπ±π3, where n∈Z Therefore, the general solution is nπ3 or nπ±π3,n∈Z