NCERT Solutions Class 11 Maths Chapter-3 (Trigonometric Functions)

NCERT Solutions Class 11 Maths Chapter-3 (Trigonometric Functions)

NCERT Solutions Class 11 Maths from class 11th Students will get the answers of Chapter-3 (Trigonometric Functions) . This chapter will help you to learn the basics and you should expect at least one question in your exam from this chapter.
We have given the answers of all the questions of NCERT Board Mathematics Textbook in very easy language, which will be very easy for the students to understand and remember so that you can pass with good marks in your examination.
Solutions Class 11 Maths Chapter-3 (Trigonometric Functions)
NCERT Question-Answer

Class 11 Mathematics

Chapter-3 (Trigonometric Functions)

Questions and answers given in practice

Chapter-3 (Trigonometric Functions)

Exercise 3.1

Question 1:

Find the radian measures corresponding to the following degree measures:
(i) 25°
(ii) – 47° 30′
(iii) 240°
(iv) 520°

Answer.  (i) 25 We know that 180= radian 25=180×25 radian =536 radian   (ii) 47304730=4712=952 Since 180= radian  (iii) 240 We know that 180= radian 240=180×240 radian =43 radian  

Q2. Find the degree measures corresponding to the following radian measures (Use =227)

Answer.  (i) 1116 We know that  radian =180 1116radain=180×1116 degree =45×11×4 deg ree =45×11×722×4 deg ree =3158 degree  =3938 deg ree =39+3×608 min utes [1=60]=39+22+12 min utes =392230[1=60] ()4 We know that  radian =1804 radian =180×(4) deg ree =180×7(4)22 degree =252011 deg ree =229111 degree  =229+1×6011 min utes [1=60] =22951227[1=60]  (iii) 53 We know that  radlan =18053 radian =180×53 degree =300 

Question 3:
A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?

Answer:
Number of revolutions made by the wheel in 1 minute = 360
∴ Number of revolutions made by the wheel in 1  second = 6 Hence, 
In one complete revolution, the wheel turns an angle of 2π radian.
Hence, in 6 complete revolutions, it will turn an angle of 6 × 2π radian, i.e., 12π radian
Thus, in one second, the wheel turns an angle of 12π radian.
Question 4:
Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm y an arc of length 22 cm (Use ).
Answer. We know that in a circle of radius r unit, if an arc of length l unit subtends and angle  radian at the centre, then =1 Therefore, for r = 100 cm, l = 22 cm, we have =22100 radian =180×22100 deg ree =180×7×2222×100 deg ree =12610 deg ree =1235 deg ree =1236[1=60] Thus, the required angle is 1236.

Question 5:
In a circle of diameter 40 cm, the length of a chord is 20 cm. Find the length of minor arc of the chord.

Answer. Diameter of the circle = 40 cm Radius of the circle = 402cm=20cm Let AB be a chord (length = 20 cm) of the circle.   In ,== Radius of circle =20cm Also, =20cm Thus,  is an equilateral triangle.  =60=3 We know that in a circle of radius r unit, if an arc of length l unit subtends an angle  radian at the centre, then = 3=~20~=203cm Thus, the length of the minor arc of the chord is 203cm.

Question 6:
If in two circles, arcs of the same length subtend angles 60° and 75° at the centre, find the ratio of their radii.

Answer. Let the radii of the two circles be 1 and 2 . Let an arc of length l subtend an angle of 60 at the centre of the circle of radius 1 , while let an arc of length l subtend an angle of 60 at the centre of the circle of radius 2. Now, 60=3 radian  and 75=512 We know that in a circle of radius r unit, if an arc of length l unit subtends an angle  radian at the centre, then = or = =13 and =251213=25121=25412=54 Thus, the ratio of the radii is 5 : 4.

Question 7:
Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length
(i) 10 cm
(ii) 15 cm
(iii) 21 cm.

Answer. We know that in a circle of radius r unit, if an arc of length l unit subtends an angle  radian at the centre, then =. It is given that r = 75 cm (i) Here, l = 10 cm =1075 radian =215 radian (ii) Here, l = 15 cm =1575 radian =15 radian (iii) Here, l = 21 cm =2175 radian =725 radian

Exercise 3.2

Question 1:
Find the values of other five trigonometric functions if cos x = – \(\frac{1}{2}\) x lies in third quadrant.

Answer:
Solutions Class 11 Maths Chapter-3 (Trigonometric Functions)
Question 2:
Find the values of other five trigonometric functions if sin 
sin=35 , x  lies in second quadrant.

Answer. sin=35=1sin=1(35)=53sin2+cos2=1cos2=1sin2cos2=1(35)2 cos2=1925cos2=1625cos=±45 Since x lies in the 2nd quadrant, the value of cos x will be negative cos=45sec=1cos=1(45)=54tan=sincos=(35)cos=(35)cos=(45)(45)=34cot=1tan=43.

Question 3:
Find the values of other five trigonometric functions if cot
cot=34 , x lies in third quadrant.

Answer. cot=34tan=1cot=1(34)=431+tan2=sec2 1+(43)2=sec21+169=sec2259=sec2sec=±53 Since, x lies in the 3rd quadrant, the value of sec x will be negative. sec=53cos=1sec=1(53)=35tan=sincos43=sin(35) 

Question 4:
Find the values of other five trigonometric functions if 
 sec=135 , x lies in fourth quadrant.
Answer. sec=135cos=1sec=1(135)=513sin2+cos2=1sin2=1cos2 sin2=1(513)2sin2=125169=144169sin=±1213 Since x lies in the 4th quadrant, the value of sin x will be negative. 

Question 5:Find the values of other five trigonometric functions if

tan=512 , x lies in second quadrant.
Answer. tan=512cot=1tan=1(512)=1251+tan2=sec21+(512)2=sec2 1+25144=sec2169144=sec2sec=±1312 Since x lies in the 2nd quadrant, the value of sec x will be negative. sec=1312cos=1sec=1(1312)=1213tan=sincos512=sin(1213) sin=(512)×(1213)=513=1sin=1(513)=135

Question 6:
Find the value of the trigonometric function sin 765°.

Ans:
It is known that the values of sin x repeat after an interval of 2π or 360°.

Question 7:
Find the value of the trigonometric function cosec (- 1410°)

Ans:
It is known that the values of cosec x repeat after an interval of 2π or 360°.
∴ cosec (- 1410°) = cosec (- 1410° + 4 x 360°)
= cosec (- 1410° + 1440°)
= cosec 30° = 2.
Question 8:
Find the value of the trigonometric function 
in tan193.
Ans:

It is known that the values of tan x repeat after an interval 
of  or 180 . tan193=tan613=tan(6+3)=tan3=tan60=3.

Question 9:
Find the value of the trigonometric function 
in .

Ans .It is known that the values of cot x repeat after an interval of 

 or 360 . 

Question 10:
Find the value of the trigonometric function  in cot(154).

Ans:

It is known that the values of cot x repeat after an interval of

 or 180 . cot(154)=cot(154+4)=cot4=1.

Exercise 3.3

Question 1:

Prove that: 

Answer. 

Q2. Prove that: 
Ans
Solutions Class 11 Maths Chapter-3 (Trigonometric Functions)
Q3. Prove that: 
Answer.  L.H.S. =cot26+56+3tan26=(3)2+coscc(6)+3(13)2  
Q4. Prove that: 

Answer. .H.S=2sin234+2cos24+2sec23 

Question 5:
Find the value of: (i) sin 75°,
(ii) tan 15°

Answer. ()sin75=sin(45+30)=sin45cos30+cos45sin30[sin(+)=sincos+cossin]=(12)(32)+(12)(12)=322+122=3+122 (ii) tan15=tan(4530) =tan45tan301+tan45tan30[tan()=tantan1+tantan] 

Q6. Prove the following: 
Answer. cos(4)cos(4)sin(4)sin(4)=12[2cos(4)cos(4)]+12[2sin(4)sin(4)]=12[cos{(4)+(4)}+cos{(4)(4)}]+12[cos{(4)+(4)}cos{(4)(4)}] [2coscos=cos(+)+cos()2sinsin=cos(+)cos()] Q7. Prove the following: 
Answer. It is known that tan(+)=tan+tan1tantan and tan()=tantan1+tantan 
Q8. Prove the following: 

Answer. 

Q9. Prove the following: 

Answer. L.H.S =cos(32+)cos(2+)[cot(32)+cot(2+)] 
Q10.Prove that: sin (n + 1) x sin (n + 2) x + cos (n + 1) x cos (n + 2) x = cos x
Answer. L.H.S = sin(+1)sin(+2)+cos(+1)cos(+2) =12[2sin(+1)sin(+2)+2cos(+1)cos(+2)] =12[cos{(+1)(+2)}cos{(+1)+(+2)}+cos{(+1)+(+2)}+cos{(+1)(+2)}] [2sinsin=cos(+)cos()2coscos=cos(+)+cos()] 

Q11. Prove the following: 

Answer. It is known that coscos=2sin(+2)sin(2)  = cos(34+)cos(34) =2sin{(34+)+(34)2}sin{(34+)(34)2} 

Q12. Prove the following: 

Answer. It is known that sin+sin=2sin(+2)cos(2),sinsin=2cos(+2)sin(2) L.H.S.=sin26sin24=(sin6+sin4)(sin6sin4) =[2sin(6x+4x2)cos(6x4x2)][2cos(6x+4x2)sin(6x4x2)] =(2sin5cos)(2cos5sin)=(2sin5cos5)(2sincos)=sin10sin2 = R. H . S.

Question 13:
Prove that: cos2 2x cos2 6x = sin 4x sin 8x

Answer. It is known that cos+cos=2cos(+2)cos(2),coscos=2sin(+2)sin(2) L.HS,=cos22cos26x=(cos2+cos6)(cos26) =[2cos(2+62)cos(262)][2sin(2+62)sin(26)2]=[2cos4cos(2)][2sin4sin(2)] 

Q14.Prove that: sin 2x + 2 sin 4x + sin 6x = 4 cos2 x sin 4x
Answer. LH.S.=sin2+2sin4+sin6=[sin2+sin6]+2sin4=[2sin(2x+6x2)(2x6x2)]+2sin4x [sin+sin=2sin(+2)cos(2)] 
Q15prove that:cot 4x (sinve  5x + sin 3x) = cot x (sin 5x – sin 3x)
Answer.  L. H.S =cot4(sin5+sin3)=cot4sin4[2sin(5+32)cos(532)][sin+sin=2sin(+2)cos(2)] =(cos4sin4)[2sin4cos]=2cos4cos.4.5.=cot(sin5sin3)=cossin[2cos(5+32)sin(532)][sinsin=2cos(+2)sin(2)]  
Q16. Prove the following: 
Answer. It is known that coscos=2sin(+2)sin(2),sinsin=2cos(+2)sin(2) ..=cos9cos5sin17sin3 =2sin(9+52)sin(952)2cos(17+32)sin(1732)  
Q17. Prove the following: 

Answer. It is known that sin+sin=2sin(+2)cos(2),cos+cos=2cos(+2)cos(2) .=sin5+sin3cos5+cos3 2sin(5+32)cos(532)2cos(5+32)cos(532)=2sin4cos2cos4cos=sin4cos4 = tan 4x = R.H.S

Q18. Prove the following: 
Answer. It is known that sinsin=2cos(+2)sin(2),cos+cos=2cos(+2)cos(2)  = =sinsincos+cos =2cos(+2)sin(2)2cos(+2)cos(2) 
Q19. Prove the following: 
sin+sin=2sin(+2)cos(2),cos+cos=2cos(+2)cos(2) ...=sin+sin3cos+cos3 
Q20. Prove the following: x

Answer. It is known that sinsin=2cos(+2)sin(2),cos2sin2=cos2 =sinsin3sin2cos2 

Q21. Prove the following: 

Answer. L.H.S =cos4+cos3+cos2sin4+sin3+sin2 =(cos4+cos2)+cos3(sin4+sin2)+sin32cos(4+22)cos(422)+cos3=2sin(4+22)cos(422)+sin3 [cos+cos=2cos(+2)cos(2),sin+sin=2sin(+2)cos(2)] 

Q22. Prove the following:  
Answer.  L. H.S. =cotcot2cot2cot3cot3cot=cotcot2cot3(cot2+cot)=cotcot2cot(2+)(cot2+cot)=cotcot2[cot2cot1cot+cot2](cot2+cot) 
Q23. Prove the following: 
Answer. It is known that tan2A=2tanA1tan2A L H.S. =tan4x=tan2(2x)=2tan2x1tan2(2x)=2(2tanx1tan2x)1(2tanx1tan2x)2 =(4tan1tan2)14tan2(1tan2)2] =(4tan1tan2)[(1tan2)24tan2(1tan2)2] 
Q24.Prove that: cos 4x = 1-8 sin2 x cos2 x
Answer. 
Q25.Prove that: cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1
Ans:
We know that: cos 3x = 4 cos3 x – 3cos x
On replacing x by 2x, we get
cos 3(2x) = 4 cos3 (2x) – 3 cos 2x
⇒ cos 6x = 4 (2cos2 x – 1)3 – 3 (2cos2 x – 1)
[∵ cos 2x = 2cos2 x – 1]
= 4 [8 cos6 x – 12 cos4 x + 6 cos2 x – 1] – 6 cos2 x + 3
[∵ (a – b)3 = a3 – 3a2b + 3ab2 – b3]
= 32 cos6 x – 48 cos4 x + 24 cos2 x – 4 – 6 cos2 x + 3
⇒ cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1
Hence proved.

Exercise 3.4

Question 1:
Find the principal and general solutions of the equation, tan x = √3

Answer. tan=3 It is known that tan3=3 and tan (43)=tan(+3)=tan3=3 Therefore, the principal solutions are x = 3 and 43 Now, tan x = tan3 =+3, where  Therefore, the general solution is =+3, where .
Question 2:
Find the principal and general solutions of the equation: sec x = 2

Answer. Sec x = 2 It is known that sec3=2 and sec53=sec(23)=sec3=2 Therefore, the principal solutions are x = 3 and 53 Now 7sec=sec3cos=cos3=2±3, where  Therefore, the general solution is  
Question 3:Find the principal and general solutions of the equation cot cot x = – √3.
Answer. Cot x = 3 It is known that cot6=3 cot(6)=cot6=3 and cot(26)=cot6=3 i.e., cot56=3 and cot116=3 Therefore, the principal solutions are x = 56 and 116 Now, cot=cot56 tan=tan56[cot=1tan] =+56, where  Therefore, the general solution is =+56, where .
Question 4:
Find the principal and general solutions of cosec x = – 2

Answer. Cosec x = -2 It is known that 6=2coscc(+6)=coscc6=2 and cosec (26)=coscc6=2 76=2 and 116=2 Therefore, the principal solutions are x = 76 and 116 Now, cosec x = cosec76 sin=sin76[=1sin] =+(1)76, where  Therefore, the general solution is =+(1)76, where .
Question 5:
Find the general solution of the equation: cos 4x = cos 2x

Answer. cos4=cos2cos4cos2=02sin(4+22)sin(422)=0 

Question 6:
Find the general solution of the equation cos 3x + cosx – cos 2x = 0

Answer. cos3+coscos2=02cos(3+2)cos(32)cos2=0[cos+cos=2cos(+2)cos(2)] 2cos2coscos2=0cos2(2cos1)=0 cos2=0 or 2cos1=0cos2=0 or cos=12 

Question 7:
Find the general solution of the equation sin 2x + cos x = 0

Answer. sin2+cos=02sincos+cos=0cos(2sin+1)=0cos=0 or 2sin+1=0  Now, cos=0cos=(2+1)2, where 2sin+1=0sin=12=sin6=sin(+6)=sin(+6)=sin76 x=n+(1)n76, where n Therefore, the general solution is (2+1)2 or +(1)76,.

Question 8:
Find the general solution of the equation sec2 2x = 1 – tan 2x.

Answer. sec22=1tan21+tan22=1tan2tan22+tan2=0tan2(tan2+1)=0tan2=0 or tan2+1=0  Now, tan2=0tan2=tan02=+0, where =2, where  tan 2+1=0 tan2=1=tan4=tan(4)=tan342=+34, where =2+38, where  Therefore, the general solution is n2 or n2+38,n

.

Question 9:
Find the general solution of the equation sin x + sin 3x + sin 5x = 0

Answer. sin x + sin 3x + sin 5x = 0 (sin+sin5)+sin3=0 [2sin(+52)cos(52)]+sin3=0[sin+sin=2sin(+2)cos(2)] 2sin3cos(2)+sin3=02sin3cos2+sin3=0sin3(2cos2+1)=0sin3=0 or 2cos2+1=0 Now, sin3=03=, where   i.c., =3, where 2cos2+1=0cos2=12=cos3=cos(3) cos2=cos232=2±23, where =±3, where  Therefore, the general solution is