NCERT Solutions Class 12 Maths Chapter-9 (Determinants)Exercise 9.5
NCERT Solutions Class 12 Maths from class
12th Students will get the answers of
Chapter-9 (Determinants)Exercise 9.5 This chapter will help you to learn the basics and you should expect at least one question in your exam from this chapter.
We have given the answers of all the questions of
NCERT Board Mathematics Textbook in very easy language, which will be very easy for the students to understand and remember so that you can pass with good marks in your examination.
Exercise 9.5
Q1. (x2+xy)dy=(x2+y2)dx
Answer. The given differential equation i.e., (x2+xy)dy=(x2+y2)dx can be written as: dydx=x2+y2x2+xy ...(i) Let F(x,y)=x2+y2x2+xy Now, F(λx,λy)=(λx)2+(λy)2(λx)2+(λx)(λy)=x2+y2x2+xy=λ0⋅F(x,y) This shows that equation (i) is a homogeneous equation. To solve it, we make the substitution as: y=vx Differentiating both sides with respect to x, we get: dydx=v+xdvdx Substituting the values of v and dydx in equation (i), we get: v+xdvdx=x2+(vx)2x2+x(vx)⇒v+xdvdx=1+v21+v⇒xdvdx=1+v21+v−v=(1+v2)−v(1+v)1+v⇒xdvdx=1−v1+v ⇒(1+v1−v)=dv=dxx⇒(2−1+v1−v)dv=dxx⇒(21−v−1)dv=dxx Integrating both sides, we get: ⇒v=−2log(1−v)−logx+logk⇒v=log[kx(1−v)2] ⇒yx=log[kx(1−yx)2]⇒yx=log[kx(x−y)2]⇒kx(x−y)2=ex⇒(x−y)2=kxe−yx This is the required solution of the given differential equation.
Q2. y′=x+yx
Answer. y′=x+yx⇒dydx=x+yx ...(i)LetF(x,y)=x+yx Now, F(λx,λy)=λx+λyλx=x+yx=λ0F(x,y) Thus, the given equation is a homogeneous equation. To solve it, we make the substitution as: y=vx Differentiating both sides with respect to x, we get: dydx=v+xdvdx Substituting the values of y and dydx in equation (i), we get: v+xdvdx=x+vxx⇒v+xdvdx=1+vxdvdx=1⇒dv=dxx Integrating both sides, we get: v=logx+C⇒yx=logx+C⇒y=xlogx+Cx This is the required solution of the given differential equation.
Q3. (x−y)dy−(x+y)dx=0
Answer. The given differential equation is: (x−y)dy−(x+y)dx=0⇒dydx=x+yx−y ...(i) Let F(x,y)=x+yx−y ∴F(λx,λy)=λx+λyλx−λy=x+yx−y=λ0⋅F(x,y) Thus, the given differential equation is a homogeneous equation. To solve it, we make the substitution as: y=vx ⇒ddx(y)=ddx(vx)⇒dydx=v+xdvdx Substituting the values of y and dydx in equation (i), we get: v+xdvdx=x+vxx−vx=1+v1−v xdvdx=1+v1−v−v=1+v−v(1−v)1−v⇒xdvdx=1+v21−v⇒1−v(1+v2)dv=dxx⇒(11+v2−v1−v2)dv=dxx Integrating both sides, we get: tan−1v−12log(1+v2)=logx+C⇒tan−1(yx)−12log[1+(yx)2]=logx+C⇒tan−1(yx)−12log(x2+y2x2)=logx+C ⇒tan−1(yx)−12[log(x2+y2)−logx2]=logx+C⇒tan−1(yx)=12log(x2+y2)+C⇒this is the required solution of the given differential equation.
Q4. (x2−y2)dx+2xydy=0
Answer. The given differential equation is: (x2−y2)dx+2xydy=0⇒dydx=−(x2−y2)2xy ...(i) Let F(x,y)=−(x2−y2)2xy ∴F(λx,λy)=[(λx)2−(λy)22(λx)(λy)]=−(x2−y2)2xy=λ0⋅F(x,y) To solve it, we given differential equation is a homogeneous equation. y=vx ⇒ddx(y)=ddx(vx)⇒dydx=v+xdvdx Substituting the values of y and dydx equation (i), we get: v+xdvdx=−x2−(vx)22x⋅(vx)]v+xdvdx=v2−12v ⇒xdvdx=v2−12v−v=v2−1−2v22v⇒xdvdx=−(1+v2)2v⇒2v1+v2dv=−dxx Integrating both sides, we get: log(1+v2)=−logx+logC=logCx ⇒1+v2=Cx⇒[1+y2x2]=Cx⇒x2+y2=Cx This is the required solution of the given differential equation.
Q5. x2dydx−x2−2y2+xy
Answer. The given differential equation is: x2dydx=x2−2y2+xy dydx=x2−2y2+xyx2 ...(i)LetF(x,y)=x2−2y2+xyx2∴F(λx,λy)=(λx)2−2(λy)2+(λx)(λy)(λx)2=x2−2y2+xyx2=λ0⋅F(x,y) Therefore, the given differential equation is a homogeneous equation. To solve it, we make the substitution as: y=vx⇒dydx=v+xdvdx Substituting the values of y and dydx in equation (i), we get: v+xdvdx=x2−2(vx)2+x⋅(vx)x2⇒v+xdvdx=1−2v2+v⇒xdvdx=1−2v2⇒dv1−2v2=dxx⇒12⋅dv12−v2=dxx ⇒12⋅⎡⎣dv(1√2)2−v2⎤⎦=dxx Integrating both sides, we get : 12⋅12×1√2log∣∣∣1√2+v1√2−v∣∣∣=log|x|+C ⇒12√2log∣∣∣1√2+yx1√2−yx∣∣∣=log|x|+C⇒12√2log∣∣x+√2yx−√2y∣∣=log|x|+C This is the required solution for the given differential equation.
Q6. xdy−ydx=√x2+y2dx
Answer. xdy−ydx=√x2+y2dx⇒xdy=[y+√x2+y2]dxdydx=y+√x2+y2x2+y2 ...(i) Let F(x,y)=y+√x2+y2x2 ∴F(λx,λy)=λx+√(λx)2+(λy)2λx=y+√x2+y2x=λ0⋅F(x,y) Therefore, the given differential equation is a homogeneous equation. To solve it, we make the substitution as: y=vx ⇒ddx(y)=ddx(vx)⇒dydx=v+xdvdx Substituting the values of v and dx in equation (i), we get: v+xdvdx=vx+√x2+(vx)2x⇒v+xdvdx=v+√1+v2⇒dv√1+v2=dxx Integrating both sides, we get: log∣∣v+√1+v2∣∣=log|x|+logC⇒log|yx+√1+y2x2|=log|Cx|⇒log∣∣∣y+√x2+y2x∣∣∣=log|Cx|⇒y+√x2+y2=Cx2 This is the required solution of the given differential equation.
Q7. {xcos(yx)+ysin(yx)}ydx={ysin(yx)−xcos(yx)}xdy
Answer. The given differential equation is: {xcos(yx)+ysin(yx)}ydx={ysin(yx)−xcos(yx)}xdydydx={xcos(yx)+ysin(yx)}y{ysin(yx)−xcos(yx)}x ...(i) Let F(x,y)={xcos(yx)+ysin(yx)}{ysin(yx)−xcos(yx)}x. ∴F(λx,λy)={λxcos(λyλx)+λysin(λyλx)}λy{λysin(λyλx)−λxsin(λyλx)}λx={xcos(yx)+ysin(yx)}y{ysin(yx)−xcos(yx)}x=λ0⋅F(x,y) Therefore, the given differential equation is a homogeneous equation. To solve it, we make the substitution as: y=vx⇒dydx=v+x=dvdx Substituting the values of y and dydx in equation (i), we get: v+xdvdx=(xcosv+vxsinv)⋅vx(vxsinv−xcosv)⋅x⇒v+xdvdx=vcosv+v2sinvvsinv−cosv⇒xdvdx=vcosv+v2sinvvsinv−cosv−v⇒xdvdx=vcosv+v2sinv−v2sinv+vcosvvsinv−cosv ⇒xdvdx=2vcosvvsinv−cosv⇒[vsinv−cosvvcosv]dv=2dxx⇒(tanv−1v)dv=2dxx Integrating both sides, we get: log(secv)−logv=2logx+logC⇒⇒log(secvv)=log(Cx2)⇒⇒(secvv)=Cx2⇒secv=Cx2v⇒sec(yx)=C⋅x2⋅yx ⇒sec(yx)=Cxy⇒cos(yx)=1Cxy=1C⋅1xy⇒xycos(yx)=k (k=1c) This is the required solution of the given differential equation.
Q8. xdydx−y+xsin(yx)=0
Answer. xdydx−y+xsin(yx)=0⇒xdydx=y−xsin(yx)⇒dydx=y−xsin(yx)x⇒dydx=y−xsin(yx)x ...(i) Let F(x,y)=y−xsin(yx)x ∴F(λx,λy)=λy−λxsin(λyλx)λx=y−xsin(yx)x=λ0⋅F(x,y) Therefore, the given differential equation is a homogeneous equation. To solve it, we make the substitution as: y=vx ⇒ddx(y)=ddx(vx)⇒dydx=v+xdvdx Substituting the values of y and dydx in equation (i), we get: v+xdvdx=wx−xsinvx⇒v+xdvdx=v−sinv⇒−dvsinv=dxx⇒cscvdv=−dxx Integrating both sides, we get: log|cscv−cotv|=−logx+logC=logCx⇒csc(yx)−cot(yx)=Cx⇒1sin(yx)−cos(yx)sin(yx)=Cx⇒x[1−cos(yx)]=Csin(yx) This is the required solution of the given differential equation.
Q9. ydx+xlog(yx)dy−2xdy=0
Answer. ydx+xlog(yx)dy−2xdy=0⇒ydx=[2x−xlog(yx)]dy⇒dydx=y2x−xlog(yx) ...(i) Let F(x,y)=y2x−xlog(yx) ∴F(λx,λy)=λy2(λx)−(λx)log(λyλx)=y2x−log(yx)=λ∘⋅F(x,y) Therefore, the given differential equation is a homogeneous equation. To solve it, we make the substitution as: y=vx ⇒dydx=ddx(vx)⇒dydx=v+xdvdx Substituting the values of y and dydx in equation (i), we get: v+xdvdx=vx2x−xlogv ⇒v+xdvdx=v2−logv⇒xdvdx=v2−logv−v⇒xdvdx=v−2v+vlogv2−logv⇒xdvdx=vlogv−v2−logv⇒2−logvv(logv−1)dv=dxx ⇒[1+(1−logv)v(logv−1)]dv=dxx⇒[1v(logv−1)−1v]dv=dxx Integrating both sides, we get: ∫1v(logv−1)dv−∫1vdv=∫1xdx⇒∫dvv(logv−1)−logv=logx+logC ...(ii) ⇒ Let logv−1=t⇒ddv(logv−1)=dtdv⇒1v=dtdv⇒dvv=dt Therefore, equation ( i ) becomes: ⇒∫dtt−logv=logx+logC⇒logt−log(yx)=log(Cx)⇒log[log(yx)−1]−log(yx)=log(Cx)⇒log[log(yx)−1yx]=log(Cx) ⇒xy[log(yx)−1]=Cx⇒log(yx)−1=Cy This is the required solution of the given differential equation.
Answer. (1+exy)dx+exy(1−xy)dy=0⇒(1+ey)dx=−ey(1−xy)dy(1+exy)dx+exy(1−xy)dy=0⇒(1+ey)dx=−ey(1−xy)dy ⇒dxdy=−err(1−xy)1+exy ...(i)⇒dxdy=−err(1−xy)1+exy ...(i) F(x,y)=−exr(1−xy)1+ezyF(x,y)=−exr(1−xy)1+ezy ∴F(λx,λy)=−e2x2y(1−λxλy)1+edxdy=−exy(1−xy)1+ery=λ0⋅F(x,y)∴F(λx,λy)=−e2x2y(1−λxλy)1+edxdy=−exy(1−xy)1+ery=λ0⋅F(x,y) Therefore, the given differential equation is a homogeneous equation. To solve it, we make the substitution as: x=vy⇒ddy(x)=ddy(yy)⇒dxdy=v+ydvdy Substituting the values of x and dy in equation (i), we get: Therefore, the given differential equation is a homogeneous equation. To solve it, we make the substitution as: x=vy⇒ddy(x)=ddy(yy)⇒dxdy=v+ydvdy Substituting the values of x and dy in equation (i), we get: v+ydvdy=−ey(1−v)1+ex⇒ydvdy=−er+vey1+ey−vv+ydvdy=−ey(1−v)1+ex⇒ydvdy=−er+vey1+ey−v ⇒ydvdy=−ev+vev−v−vev1+eγ⇒ydvdy=−[v+er1+er]⇒ydvdy=−ev+vev−v−vev1+eγ⇒ydvdy=−[v+er1+er] ⇒[1+evv+ey]dv=−dyy Integrating both sides, we get: ⇒[1+evv+ey]dv=−dyy Integrating both sides, we get: ⇒log(v+ev)=−logy+logC=log(Cy)⇒[xy+exy]=Cy⇒x+yexy=C This is the required solution of the given differential equation.
Q11. (x+y)dy+(x−y)dy=0;y=1 when x=1
Answer. (x+y)dy+(x−y)dx=0⇒(x+y)dy=−(x−y)dx⇒dydx=−(x−y)x+y ...(i) Let F(x,y)=−(x−y)x+y∴F(λx,λy)=−(λx−λy)λx−λy=−(x−y)x+y=λ0⋅F(x,y)(x+y)dy+(x−y)dx=0⇒(x+y)dy=−(x−y)dx⇒dydx=−(x−y)x+y ...(i) Let F(x,y)=−(x−y)x+y∴F(λx,λy)=−(λx−λy)λx−λy=−(x−y)x+y=λ0⋅F(x,y) Therefore, the given differential equation is a homogeneous equation. To solve it, we make the substitution as: y=vx⇒ddx(y)=ddx(vx)⇒dydx=v+xdvdx Substituting the values of y and dx in equation (i), we get: Therefore, the given differential equation is a homogeneous equation. To solve it, we make the substitution as: y=vx⇒ddx(y)=ddx(vx)⇒dydx=v+xdvdx Substituting the values of y and dx in equation (i), we get: v+xdvdx=−(x−vx)x+vx⇒v+xdvdx=v−1v+1⇒xdvdx=v−1v+1−v=v−1−v(v+1)v+1⇒xdvdx=v−1−v2−vv+1=−(1+v2)v+1⇒(v+1)1+v2dv=−dxxv+xdvdx=−(x−vx)x+vx⇒v+xdvdx=v−1v+1⇒xdvdx=v−1v+1−v=v−1−v(v+1)v+1⇒xdvdx=v−1−v2−vv+1=−(1+v2)v+1⇒(v+1)1+v2dv=−dxx Integrating both sides, we get: 12log(1+v2)+tan−1v=−logx+k⇒⇒log(1+v2)+2tan−1v=−2logx+2k⇒log[(1+v2)⋅x2]+2tan−1v=2k⇒log[(1+y2x2)⋅x2]+2tan−1yx=2k⇒log(x2+y2)+2tan−1yx=2k ...(ii) Integrating both sides, we get: 12log(1+v2)+tan−1v=−logx+k⇒⇒log(1+v2)+2tan−1v=−2logx+2k⇒log[(1+v2)⋅x2]+2tan−1v=2k⇒log[(1+y2x2)⋅x2]+2tan−1yx=2k⇒log(x2+y2)+2tan−1yx=2k ...(ii) Now, y=1 at x=1⇒log2+2tan−11=2k⇒log2+2×π4=2k⇒π2+log2=2k Substituting the value of 2k in equation (ii), we get: log(x2+y2)+2tan−1(yx)=π2+log2 This is the required solution of the given differential equation.
Q12. x2dy+(xy+y2)dx=0;y=1 when x=1
Answer. x2dy+(xy+y2)dx=0⇒x2dy=−(xy+y2)dx⇒dydx=−(xy+y2)x2 ...(i) Let F(x,y)=−(xy+y2)x2∴F(λx,λy)=[λx⋅λy+(λy)2](λx)2=−(xy+y2)x2=λ0⋅F(x,y)x2dy+(xy+y2)dx=0⇒x2dy=−(xy+y2)dx⇒dydx=−(xy+y2)x2 ...(i) Let F(x,y)=−(xy+y2)x2∴F(λx,λy)=[λx⋅λy+(λy)2](λx)2=−(xy+y2)x2=λ0⋅F(x,y) Therefore, the given differential equation is a homogeneous equation. To solve it, we make the substitution as: y=vx⇒ddx(y)=ddx(vx)⇒dydx=v+xdvdx Substituting the values of y and dx in equation (i), we get: Therefore, the given differential equation is a homogeneous equation. To solve it, we make the substitution as: y=vx⇒ddx(y)=ddx(vx)⇒dydx=v+xdvdx Substituting the values of y and dx in equation (i), we get: v+xdvdx=−[x⋅vx+(vx)2]x2=−v−v2⇒xdvdx=−v2−2v=−v(v+2)⇒dvv(v+2)=−dxx⇒12[(v+2)−vv(v+2)]dv=−dxx⇒12[1v−1v+2]dv=−dxxv+xdvdx=−[x⋅vx+(vx)2]x2=−v−v2⇒xdvdx=−v2−2v=−v(v+2)⇒dvv(v+2)=−dxx⇒12[(v+2)−vv(v+2)]dv=−dxx⇒12[1v−1v+2]dv=−dxx Integrating both sides, we get: 12[logv−log(v+2)]=−logx+logC⇒12log(vv+2)=logCx⇒vv+2=(Cx)2 Integrating both sides, we get: 12[logv−log(v+2)]=−logx+logC⇒12log(vv+2)=logCx⇒vv+2=(Cx)2 ⇒yxyx+2=(Cx)2⇒yy+2x=C2x2⇒x2yy+2x=C2 ...(ii) Now, y=1 at x=1⇒yxyx+2=(Cx)2⇒yy+2x=C2x2⇒x2yy+2x=C2 ...(ii) Now, y=1 at x=1 ⇒11+2=C2⇒C2=13⇒11+2=C2⇒C2=13 Substituting C2=13 in equation (ii), we get: x2yy+2x=13⇒y+2x=3x2y This is the required solution of the given differential equation.
Q13. [xsin2(xy−y)]dx+xdy=0;yπ4 when x=1
Answer. [xsin2(yx)−y]dx+xdy=0⇒dydx=−[xsin2(yx)−y]xLetF(x,y)=−[xsin2(yx)−y]x[xsin2(yx)−y]dx+xdy=0⇒dydx=−[xsin2(yx)−y]xLetF(x,y)=−[xsin2(yx)−y]x ∴F(λx,λy)=−[λx⋅sin2(λxλy)−λy]λx=−[xsin2(yx)−y]x=λ0⋅F(x,y) To solve this diven differential equation is a homogeneous equation. y=vx⇒ddx(y)=ddx(vx)⇒dydx=v+x=dvdx∴F(λx,λy)=−[λx⋅sin2(λxλy)−λy]λx=−[xsin2(yx)−y]x=λ0⋅F(x,y) To solve this diven differential equation is a homogeneous equation. y=vx⇒ddx(y)=ddx(vx)⇒dydx=v+x=dvdx Substituting the values of y and dydx in equation (i), we get: v+xdvdx=−[xsin2v−vx]x⇒v+xdvdx=−[sin2v−v]=v−sin2v⇒xdvdx=−sin2v⇒dvsin2v=−dxdx⇒csc2vdv=−dxx Substituting the values of y and dydx in equation (i), we get: v+xdvdx=−[xsin2v−vx]x⇒v+xdvdx=−[sin2v−v]=v−sin2v⇒xdvdx=−sin2v⇒dvsin2v=−dxdx⇒csc2vdv=−dxx Integrating both sides, we get: −cotv=−log|x|−C⇒cotv=log|x|+C⇒cot(yx)=log|x|+logC⇒cot(yx)=log|Cx| ...(ii)now, y=π4 at x=1−cotv=−log|x|−C⇒cotv=log|x|+C⇒cot(yx)=log|x|+logC⇒cot(yx)=log|Cx| ...(ii)now, y=π4 at x=1 ⇒cot(π4)=log|C|⇒1=logC⇒C=e1=e Substituting C=e in equation (ii), we get: cot(yx)=log|ex| This is the required solution of the given differential equation.
Q14. dydx−yx+csc(yx)=0;y=0 when x=1dydx−yx+csc(yx)=0;y=0 when x=1
Answer. dydx−yx+csc(yx)=0⇒dydx=yx−csc(yx) ...(i)LetF(x,y)=yx−csc(yx)∴F(λx,λy)=yλx−csc(yx)⇒F(λx,λy)=yx−csc(yx)=F(x,y)=λ0⋅F(x,y)dydx−yx+csc(yx)=0⇒dydx=yx−csc(yx) ...(i)LetF(x,y)=yx−csc(yx)∴F(λx,λy)=yλx−csc(yx)⇒F(λx,λy)=yx−csc(yx)=F(x,y)=λ0⋅F(x,y) Therefore, the given differential equation is a homogeneous equation. To solve it, we make the substitution as: y=vx⇒ddx(y)=ddx(vx)⇒dydx=v+xdvdx Substituting the values of y and ¯¯¯¯¯¯dx in equation (i), we get: v+xdvdx=v−cscv To solve it, we make the substitution as: y=vx⇒ddx(y)=ddx(vx)⇒dydx=v+xdvdx Substituting the values of y and dx¯ in equation (i), we get: v+xdvdx=v−cscv ⇒−dvcscv=−dxx⇒−sinvdv=dxx Integrating both sides, we get: cosv=logx+logC=log|Cx|⇒cos(yx)=log|Cx| ...(ii)⇒−dvcscv=−dxx⇒−sinvdv=dxx Integrating both sides, we get: cosv=logx+logC=log|Cx|⇒cos(yx)=log|Cx| ...(ii) This is the required solution of the given differential equation. Now, y=0 at x=1⇒cos(0)=logC⇒1=logC⇒C=e1=e Substituting C=e in equation (ii), we get: This is the required solution of the given differential equation. Now, y=0 at x=1⇒cos(0)=logC⇒1=logC⇒C=e1=e Substituting C=e in equation (ii), we get: cos(yx)=log(ex) This is the required solution of the given differential equation.
Q15. 2xy+y2−2x2dydx=0;y=2 when x=1
Answer. 2xy+y2−2x2dydx=0⇒2x2dydx=2xy+y2⇒dydx=2xy+y22x2 ...(i) Let F(x,y)=2xy+y22x2∴F(λx,λy)=2(λx)(λy)+(λy)22(λx)2=2xy+y22x2=λ0⋅F(x,y)2xy+y2−2x2dydx=0⇒2x2dydx=2xy+y2⇒dydx=2xy+y22x2 ...(i) Let F(x,y)=2xy+y22x2∴F(λx,λy)=2(λx)(λy)+(λy)22(λx)2=2xy+y22x2=λ0⋅F(x,y) Therefore, the given differential equation is a homogeneous equation. To solve it, we make the substitution as: y=vx⇒ddx(y)=ddx(vx)⇒dydx=v+xdvdx Substituting the value of y and dydx in equation (i), we get: Therefore, the given differential equation is a homogeneous equation. To solve it, we make the substitution as: y=vx⇒ddx(y)=ddx(vx)⇒dydx=v+xdvdx Substituting the value of y and dydx in equation (i), we get: v+xdvdx=2x(vx)+(vx)22x2⇒v+xdvdx=2v+v22⇒v+xdvdx=v+v22⇒2v2dv=dxx Integrating both sides, we get: v+xdvdx=2x(vx)+(vx)22x2⇒v+xdvdx=2v+v22⇒v+xdvdx=v+v22⇒2v2dv=dxx Integrating both sides, we get: 2⋅v−2+1−2+1=log|x|+C⇒−2v=log|x|+C⇒−2y=log|x|+C⇒−2xy=log|x|+C ...(ii)2⋅v−2+1−2+1=log|x|+C⇒−2v=log|x|+C⇒−2y=log|x|+C⇒−2xy=log|x|+C ...(ii) Now, y=2 at x=1⇒−1=log(1)+C⇒C=−1 Substituting C=−1 in equation (ii), we get: −2xy=log|x|−1⇒2xy=1−log|x| Now, y=2 at x=1⇒−1=log(1)+C⇒C=−1 Substituting C=−1 in equation (ii), we get: −2xy=log|x|−1⇒2xy=1−log|x| ⇒y=2x1−log|x|,(x≠0,x≠e) This is the required solution of the given differential equation.
Q16. A homogeneous differential equation of the form dxdy=h(xy) can be solved by making the substitution A. y=vx B. v=yx C. x=vy D. x=v
Answer. For solving the homogeneous equation of the form dxdy=h(xy)dxdy=h(xy), we need to make the substitution as x = vy. Hence, the correct answer is C.
Q17. Which of the following is a homogeneous differential equation? A. (4x+6y+5)dy−(3y+2x+4)dx=0 B. (xy)dx−(x3+y3)dy=0 C. (x3+2y2)dx+2xydy=0 D. y2dx+(x2−xy2−y2)dy=0
Answer. Function F(x,y) is said to be the homogenous function of degree n, if F(λx,λy)=λnF(x,y) for any non-zero constant (λ) . Consider the equation given in alternativeD: y2dx+(x2−xy−y2)dy=0⇒dydx=−y2x2−xy−y2=y2y2+xy−x2 Function F(x,y) is said to be the homogenous function of degree n, if F(λx,λy)=λnF(x,y) for any non-zero constant (λ) . Consider the equation given in alternativeD: y2dx+(x2−xy−y2)dy=0⇒dydx=−y2x2−xy−y2=y2y2+xy−x2 Let F(x,y)=y2y2+xy−x2⇒F(λx,λy)=(λy)2(λy)2+(λx)(λy)−(λx)2=λ2y2λ2(y2+xy−x2)=λ0(y2y2+xy−x2)=λ0(y2y2+xy−x2)=λ0⋅F(x,y) Hence, the differential equation given in alternative D is a homogenous equation.
Chapter-9 (Determinants)