NCERT Solutions Class 12 Maths Chapter-9 (Determinants)Exercise 9.5

NCERT Solutions Class 12 Maths Chapter-9 (Determinants)Exercise 9.5

NCERT Solutions Class 12 Maths from class 12th Students will get the answers of Chapter-9 (Determinants)Exercise 9.5 This chapter will help you to learn the basics and you should expect at least one question in your exam from this chapter.
We have given the answers of all the questions of NCERT Board Mathematics Textbook in very easy language, which will be very easy for the students to understand and remember so that you can pass with good marks in your examination.
NCERT Solutions Class 12 Maths Chapter-9 (Determinants)Exercise 9.5

Exercise 9.5

Q1. 

Answer.  The given differential equation i.e., (x2+xy)dy=(x2+y2)dx can be written as: dydx=x2+y2x2+xy   ...(i) Let F(x,y)=x2+y2x2+xy  Now, F(λx,λy)=(λx)2+(λy)2(λx)2+(λx)(λy)=x2+y2x2+xy=λ0F(x,y) This shows that equation (i) is a homogeneous equation.  To solve it, we make the substitution as: y=vx Differentiating both sides with respect to x, we get:  dydx=v+xdvdx Substituting the values of v and dydx in equation (i), we get:  v+xdvdx=x2+(vx)2x2+x(vx)v+xdvdx=1+v21+vxdvdx=1+v21+vv=(1+v2)v(1+v)1+vxdvdx=1v1+v (1+v1v)=dv=dxx(21+v1v)dv=dxx(21v1)dv=dxx Integrating both sides, we get: v=2log(1v)logx+logkv=log[kx(1v)2] 

Q2. 

Answer. y=x+yxdydx=x+yx   ...(i)LetF(x,y)=x+yx Now, F(λx,λy)=λx+λyλx=x+yx=λ0F(x,y)  Thus, the given equation is a homogeneous equation.  To solve it, we make the substitution as: y=vx Differentiating both sides with respect to x, we get: dydx=v+xdvdx Substituting the values of y and dydx in equation (i), we get:  v+xdvdx=x+vxxv+xdvdx=1+vxdvdx=1dv=dxx Integrating both sides, we get:    v=logx+Cyx=logx+Cy=xlogx+Cx This is the required solution of the given differential equation.

Q3. 

Answer.  The given differential equation is: (xy)dy(x+y)dx=0dydx=x+yxy   ...(i) Let F(x,y)=x+yxy F(λx,λy)=λx+λyλxλy=x+yxy=λ0F(x,y) Thus, the given differential equation is a homogeneous equation.  To solve it, we make the substitution as: y=vx ddx(y)=ddx(vx)dydx=v+xdvdx Substituting the values of y and dydx in equation (i), we get: v+xdvdx=x+vxxvx=1+v1v xdvdx=1+v1vv=1+vv(1v)1vxdvdx=1+v21v1v(1+v2)dv=dxx(11+v2v1v2)dv=dxx  Integrating both sides, we get: tan1v12log(1+v2)=logx+Ctan1(yx)12log[1+(yx)2]=logx+Ctan1(yx)12log(x2+y2x2)=logx+C 

Q4. 

Answer.  The given differential equation is: (x2y2)dx+2xydy=0dydx=(x2y2)2xy   ...(i) Let F(x,y)=(x2y2)2xy F(λx,λy)=[(λx)2(λy)22(λx)(λy)]=(x2y2)2xy=λ0F(x,y) To solve it, we given differential equation is a homogeneous equation. y=vx ddx(y)=ddx(vx)dydx=v+xdvdx Substituting the values of y and dydx equation (i), we get: v+xdvdx=x2(vx)22x(vx)]v+xdvdx=v212v xdvdx=v212vv=v212v22vxdvdx=(1+v2)2v2v1+v2dv=dxx Integrating both sides, we get: log(1+v2)=logx+logC=logCx 

Q5. 

Answer.  The given differential equation is: x2dydx=x22y2+xy dydx=x22y2+xyx2   ...(i)LetF(x,y)=x22y2+xyx2F(λx,λy)=(λx)22(λy)2+(λx)(λy)(λx)2=x22y2+xyx2=λ0F(x,y)  Therefore, the given differential equation is a homogeneous equation.  To solve it, we make the substitution as: y=vxdydx=v+xdvdx Substituting the values of y and dydx in equation (i), we get:  v+xdvdx=x22(vx)2+x(vx)x2v+xdvdx=12v2+vxdvdx=12v2dv12v2=dxx12dv12v2=dxx 12[dv(12)2v2]=dxx Integrating both sides, we get : 1212×12log|12+v12v|=log|x|+C 122log|12+yx12yx|=log|x|+C122log|x+2yx2y|=log|x|+C This is the required solution for the given differential equation.

Q6. 

Answer. xdyydx=x2+y2dxxdy=[y+x2+y2]dxdydx=y+x2+y2x2+y2   ...(i) Let F(x,y)=y+x2+y2x2 F(λx,λy)=λx+(λx)2+(λy)2λx=y+x2+y2x=λ0F(x,y) Therefore, the given differential equation is a homogeneous equation.  To solve it, we make the substitution as: y=vx ddx(y)=ddx(vx)dydx=v+xdvdx  Substituting the values of v and dx in equation (i), we get: v+xdvdx=vx+x2+(vx)2xv+xdvdx=v+1+v2dv1+v2=dxx Integrating both sides, we get:  

Q7. 

Answer. The given differential equation is: {xcos(yx)+ysin(yx)}ydx={ysin(yx)xcos(yx)}xdydydx={xcos(yx)+ysin(yx)}y{ysin(yx)xcos(yx)}x               ...(i) Let F(x,y)={xcos(yx)+ysin(yx)}{ysin(yx)xcos(yx)}x. F(λx,λy)={λxcos(λyλx)+λysin(λyλx)}λy{λysin(λyλx)λxsin(λyλx)}λx={xcos(yx)+ysin(yx)}y{ysin(yx)xcos(yx)}x=λ0F(x,y)  Therefore, the given differential equation is a homogeneous equation.  To solve it, we make the substitution as: y=vxdydx=v+x=dvdx Substituting the values of y and dydx in equation (i), we get:  v+xdvdx=(xcosv+vxsinv)vx(vxsinvxcosv)xv+xdvdx=vcosv+v2sinvvsinvcosvxdvdx=vcosv+v2sinvvsinvcosvvxdvdx=vcosv+v2sinvv2sinv+vcosvvsinvcosv xdvdx=2vcosvvsinvcosv[vsinvcosvvcosv]dv=2dxx(tanv1v)dv=2dxx  Integrating both sides, we get: log(secv)logv=2logx+logClog(secvv)=log(Cx2)(secvv)=Cx2secv=Cx2vsec(yx)=Cx2yx 

Q8. 

Answer. xdydxy+xsin(yx)=0xdydx=yxsin(yx)dydx=yxsin(yx)xdydx=yxsin(yx)x     ...(i) Let F(x,y)=yxsin(yx)x F(λx,λy)=λyλxsin(λyλx)λx=yxsin(yx)x=λ0F(x,y) Therefore, the given differential equation is a homogeneous equation.  To solve it, we make the substitution as: y=vx ddx(y)=ddx(vx)dydx=v+xdvdx  Substituting the values of y and dydx in equation (i), we get: v+xdvdx=wxxsinvxv+xdvdx=vsinvdvsinv=dxxcscvdv=dxx  Integrating both sides, we get:  log|cscvcotv|=logx+logC=logCxcsc(yx)cot(yx)=Cx1sin(yx)cos(yx)sin(yx)=Cxx[1cos(yx)]=Csin(yx) This is the required solution of the given differential equation.

Q9. 

Answer. ydx+xlog(yx)dy2xdy=0ydx=[2xxlog(yx)]dydydx=y2xxlog(yx)    ...(i) Let F(x,y)=y2xxlog(yx) F(λx,λy)=λy2(λx)(λx)log(λyλx)=y2xlog(yx)=λF(x,y) Therefore, the given differential equation is a homogeneous equation.  To solve it, we make the substitution as: y=vx dydx=ddx(vx)dydx=v+xdvdx Substituting the values of y and dydx in equation (i), we get: v+xdvdx=vx2xxlogv v+xdvdx=v2logvxdvdx=v2logvvxdvdx=v2v+vlogv2logvxdvdx=vlogvv2logv2logvv(logv1)dv=dxx [1+(1logv)v(logv1)]dv=dxx[1v(logv1)1v]dv=dxx Integrating both sides, we get: 1v(logv1)dv1vdv=1xdxdvv(logv1)logv=logx+logC     ...(ii)  Let logv1=tddv(logv1)=dtdv1v=dtdvdvv=dt Therefore, equation ( i ) becomes:  dttlogv=logx+logClogtlog(yx)=log(Cx)log[log(yx)1]log(yx)=log(Cx)log[log(yx)1yx]=log(Cx) 

Q10. (1+exy)dx+exJ(1xy)dy=0

Answer. (1+exy)dx+exy(1xy)dy=0(1+ey)dx=ey(1xy)dy dxdy=err(1xy)1+exy     ...(i) F(x,y)=exr(1xy)1+ezy F(λx,λy)=e2x2y(1λxλy)1+edxdy=exy(1xy)1+ery=λ0F(x,y)  Therefore, the given differential equation is a homogeneous equation.  To solve it, we make the substitution as: x=vyddy(x)=ddy(yy)dxdy=v+ydvdy Substituting the values of x and dy in equation (i), we get:  v+ydvdy=ey(1v)1+exydvdy=er+vey1+eyv ydvdy=ev+vevvvev1+eγydvdy=[v+er1+er] [1+evv+ey]dv=dyy Integrating both sides, we get:  

Q11. 

Answer. (x+y)dy+(xy)dx=0(x+y)dy=(xy)dxdydx=(xy)x+y       ...(i) Let F(x,y)=(xy)x+yF(λx,λy)=(λxλy)λxλy=(xy)x+y=λ0F(x,y)  Therefore, the given differential equation is a homogeneous equation.  To solve it, we make the substitution as: y=vxddx(y)=ddx(vx)dydx=v+xdvdx Substituting the values of y and dx in equation (i), we get:  v+xdvdx=(xvx)x+vxv+xdvdx=v1v+1xdvdx=v1v+1v=v1v(v+1)v+1xdvdx=v1v2vv+1=(1+v2)v+1(v+1)1+v2dv=dxx  Integrating both sides, we get: 12log(1+v2)+tan1v=logx+klog(1+v2)+2tan1v=2logx+2klog[(1+v2)x2]+2tan1v=2klog[(1+y2x2)x2]+2tan1yx=2klog(x2+y2)+2tan1yx=2k    ...(ii) 

Q12. 

Answer. x2dy+(xy+y2)dx=0x2dy=(xy+y2)dxdydx=(xy+y2)x2      ...(i) Let F(x,y)=(xy+y2)x2F(λx,λy)=[λxλy+(λy)2](λx)2=(xy+y2)x2=λ0F(x,y)  Therefore, the given differential equation is a homogeneous equation.  To solve it, we make the substitution as: y=vxddx(y)=ddx(vx)dydx=v+xdvdx Substituting the values of y and dx in equation (i), we get:  v+xdvdx=[xvx+(vx)2]x2=vv2xdvdx=v22v=v(v+2)dvv(v+2)=dxx12[(v+2)vv(v+2)]dv=dxx12[1v1v+2]dv=dxx  Integrating both sides, we get: 12[logvlog(v+2)]=logx+logC12log(vv+2)=logCxvv+2=(Cx)2 yxyx+2=(Cx)2yy+2x=C2x2x2yy+2x=C2      ...(ii) Now, y=1 at x=1 11+2=C2C2=13 Substituting 

Q13. 

Answer. [xsin2(yx)y]dx+xdy=0dydx=[xsin2(yx)y]xLetF(x,y)=[xsin2(yx)y]x F(λx,λy)=[λxsin2(λxλy)λy]λx=[xsin2(yx)y]x=λ0F(x,y) To solve this diven differential equation is a homogeneous equation. y=vxddx(y)=ddx(vx)dydx=v+x=dvdx  Substituting the values of y and dydx in equation (i), we get: v+xdvdx=[xsin2vvx]xv+xdvdx=[sin2vv]=vsin2vxdvdx=sin2vdvsin2v=dxdxcsc2vdv=dxx Integrating both sides, we get: cotv=log|x|Ccotv=log|x|+Ccot(yx)=log|x|+logCcot(yx)=log|Cx|       ...(ii)now, y=π4 at x=1 

Q14. dydxyx+csc(yx)=0;y=0 when x=1

Answer. dydxyx+csc(yx)=0dydx=yxcsc(yx)      ...(i)LetF(x,y)=yxcsc(yx)F(λx,λy)=yλxcsc(yx)F(λx,λy)=yxcsc(yx)=F(x,y)=λ0F(x,y) Therefore, the given differential equation is a homogeneous equation.  To solve it, we make the substitution as: y=vxddx(y)=ddx(vx)dydx=v+xdvdx Substituting the values of y and dx¯ in equation (i), we get: v+xdvdx=vcscv dvcscv=dxxsinvdv=dxx Integrating both sides, we get: cosv=logx+logC=log|Cx|cos(yx)=log|Cx|     ...(ii)  This is the required solution of the given differential equation.  Now, y=0 at x=1cos(0)=logC1=logCC=e1=e Substituting C=e in equation (ii), we get:  

Q15. 

Answer. 2xy+y22x2dydx=02x2dydx=2xy+y2dydx=2xy+y22x2       ...(i) Let F(x,y)=2xy+y22x2F(λx,λy)=2(λx)(λy)+(λy)22(λx)2=2xy+y22x2=λ0F(x,y)  Therefore, the given differential equation is a homogeneous equation.  To solve it, we make the substitution as: y=vxddx(y)=ddx(vx)dydx=v+xdvdx Substituting the value of y and dydx in equation (i), we get:  v+xdvdx=2x(vx)+(vx)22x2v+xdvdx=2v+v22v+xdvdx=v+v222v2dv=dxx Integrating both sides, we get:  2v2+12+1=log|x|+C2v=log|x|+C2y=log|x|+C2xy=log|x|+C     ...(ii)  Now, y=2 at x=11=log(1)+CC=1 Substituting C=1 in equation (ii), we get: 2xy=log|x|12xy=1log|x| 

Q16. 

Answer. For solving the homogeneous equation of the form dxdy=h(xy), we need to make the substitution as x = vy. Hence, the correct answer is C.

Q17. 

Answer.  Function F(x,y) is said to be the homogenous function of degree n, if F(λx,λy)=λnF(x,y) for any non-zero constant (λ) .  Consider the equation given in alternativeD: y2dx+(x2xyy2)dy=0dydx=y2x2xyy2=y2y2+xyx2 

Chapter-9 (Determinants)