NCERT Solutions Class 12 Maths Chapter-9 (Determinants)Exercise 9.4

NCERT Solutions Class 12 Maths Chapter-9 (Determinants)Exercise 9.4

NCERT Solutions Class 12 Maths from class 12th Students will get the answers of Chapter-9 (Determinants)Exercise 9.4 This chapter will help you to learn the basics and you should expect at least one question in your exam from this chapter.
We have given the answers of all the questions of NCERT Board Mathematics Textbook in very easy language, which will be very easy for the students to understand and remember so that you can pass with good marks in your examination.
Solutions Class 12 maths Chapter-9 (Determinants)Exercise 9.4

Exercise 9.4

Q1. 

Answer.  The given differential equation is: dydx=1cosx1+cosxdydx=2sin2x22cos2x2=tan2x2dydx=(sec2x21) Separating the variables, we get: dy=(sec2x21)dx 

Q2. 

Answer.  The given differential equation is: dydx=1cosx1+cosxdydx=2sin2x22cos2x2=tan2x2dydx=(sec2x21) Separating the variables, we get: dy=(sec2x21)dx 

Q3. 

Answer.  The given differential equation is: dydx+y=1dy+ydx=dxdy=(1y)dx Separating the variables, we get: dy1y=dx Now, integrating both sides, we get:  dy1y=dxlog(1y)=x+logClogClog(1y)=xlogC(1y)=xC(1y)=ex 

Q4. 

Answer.  The given differential equation is: sec2xtanydx+sec2ytanxdy=0sec2xtanydx+sec2ytanxdytanxtany=0sec2xtanxdx=sec2ytanydysec2xtanxdx=sec2ytanydy  Integrating both sides of this equation, we get: sec2xtanxdx=sec2ytanydy      ...(i) Let tanx=tddx(tanx)=dtdxsec2x=dtdxsec2xdx=dt  Now, sec2xtanxdx=1tdt=logt=log(tanx)  Similarly, tanxsec2xdy=log(tany) Substituting these values in equation (1), we get: log(tanx)=log(tany)+logC 

Q5. 

Answer.  The given differential equation is: (ex+ex)dy(exex)dx=0(ex+ex)dy=(exex)dxdy=[exexex+ex]dx Integrating both sides of this equation, we get:  dy=[exexex+ex]dx+Cy=[exexex+ex]dx+C   ...(i) Let (ex+ex)=t Differentiating both sides with respect to x, we get:  ddx(ex+ex)=dtdxexex=dtdt(exex)dx=dt Substituting this value in equation (i), we get:  

Q6. 

Answer.  The given differential equation is: dydx=(1+x2)(1+y2)dy1+y2=(1+x2)dx Integrating both sides of this equation, we get:  

Q7. 

Answer.  The given differential equation is: ylogydxxdy=0ylogydx=xdydyylogy=dxx Integrating both sides, we get: dyylogy=dxx   ...(i)  Let logy=tddy(logy)=dtdy1y=dtdy1ydy=dt Substituting this value in equation (i), we get:  

Q8. 

Answer.  The given differential equation is: x5dydx=y5dyy5=dxx5dxx5+dyy5=0  Integrating both sides, we get: dxx5+dyy5=k (where k is any constant) x5dx+y5dy=kx44+y44=kx4+y4=4k 

Q9. 

Answer.  The given differential equation is: dydx=sin1xdy=sin1xdx Integrating both sides, we get: dy=sin1x1)dxy=(sin1x1)dx y=sin1x(ddx(sin1x)(1)dx)]dxy=sin1xx(11x2x)dxy=xsin1x+11x2dx   ...(i)  Let 1x2=tddx(1x2)=dtdx2x=dtdxxdx=12dt Substituting this value in equation (i), we get:  

Q10. 

Answer.  The given differential equation is: extanydx+(1ex)sec2ydy=0(1ex)sec2ydy=extanydx Separating the variables, we get: sec2ytanydy=ex1exdx Integrating both sides, we get: sec2ytanydy=ex1exdx   ...(i)  Let tany=uddy(tany)=dudysec2y=dudysec2ydy=dusec2ytanydy=duu=logu=log(tany)  Now, let 1ex=tddx(1ex)=dtdxex=dtdxexdx=dtex1exdx=dtt=logt=log(1ex) Substituting the values of sec2ytanydy and ex1exdx 

Q11. 

Answer.  The given differential equation is: (x3+x2+x+1)dydx=2x2+xdydx=2x2+x(x3+x2+x+1)dy=2x2+x(x+1)(x2+1)dx Integrating both sides, we get:  dy=2x2+x(x+1)(x2+1)dx   ...(i) Let 2x2+x(x+1)(x2+1)=Ax+1+Bx+Cx2+1   ...(ii)2x2+x(x+1)(x2+1)=Ax2+A+(Bx+C)(x+1)(x+1)(x2+1)2x2+x=Ax2+A+Bx+Cx+C2x2+x=(A+B)x2+(B+C)x+(A+C) Comparing the coefficients of x2 and x, we get:  A+B=2B+C=1A+C=0 Solving these equations, we get: A=12,B=32 and C=12 Substituting the values of A,B, and C in equation (ii), we get: 2x2+x(x+1)(x2+1)=121(x+1)+12(x2+1) Therefore, equation (i) becomes:  dy=121x+1dx+123x1x2+1dxy=12log(x+1)+32xx2+1dx121x2+1dxy=12log(x+1)+342xx2+1dx12tan1x+Cy=12log(x+1)+34log(x2+1)12tan1x+C y=14[2log(x+1)+3log(x2+1)]12tan1x+Cy=14[(x+1)2(x2+1)3]12tan1x+C   ...(iii) Now, y=1 when x=0 . 1=14log(1)12tan10+C 

Q12. 

Answer. x(x21)dydx=1dy=dxx(x21)dy=1x(x1)(x+1)dx Integrating both sides, we get:  dy=1x(x1)(x+1)dx   ...(i) Let 1x(x1)(x+1)=Ax+Bx1+Cx+1 .     ...(ii)1x(x1)(x+1)=A(x1)(x+1)+Bx(x+1)x(x+1)=(A+B+C)x2+(BC)xAx(x1)(x+1) Comparing the coefficients of x2,x, and constant, we get:  A=1BC=0A+B+C=0 Solving these equations, we get B=12 and C=12 .  Substituting the values of A,B, and C in equation (ii), we get:  1x(x1)(x+1)=1x+12(x1)+12(x+1) Therefore, equation (i) becomes:  dy=x1dx+121x1dx+121x+1dxy=logx+12log(x1)+12log(x+1)+logky=12log[k2(x1)(x+1)x2]    ...(iii)  Now, y=0 when x=20=12log[k2(21)(2+1)4]log(3k24)=03k24=13k2=4k2=43 

Q13. 

Answer. cos(dydx)=adydx=cos1ady=cos1a Integrating both sides, we get: dy=cos1adxy=cos1ax+Cy=xcos1a+C   ...(i) 

Q14. 

Answer. dydx=ytanxdyy=tanxdx Integrating both sides, we get:  ydy=tanxdxlogy=log(secx)+logClogy=log(Csecx)y=Csecx   ...(i) 

Q15. 

Answer.  The differential equation of the curve is: y=exsinxdydx=exsinxdy=exsinx Integrating both sides, we get:  dy=exsinxdx   ...(i) Let I=exsinxdxI=sinxexdxddx(sinx)exdx)dx I=sinxexcosxexdxI=sinxex[cosxexdxddx(cosx)exdx]dx]I=sinxex[cosxex(sinx)exdx]I=exsinxexcosxI2I=ex(sinxcosx)I=ex(sinxcosx)2  Substituting this value in equation (i), we get: y=ex(sinxcosx)2+C   ...(ii) Now, the curve passes through point (0,0).0=e0(sin0cos0)2+C 0=1(01)2+CC=12 

Q16. 

Answer.  The differential equation of the given curve is: xydydx=(x+2)(y+2)(yy+2)dy=(x+2x)dx(12y+2)dy=(1+2x)dx Integrating both sides, we get: (12y+2)dy=(1+2x)dx dy21y+2dy=dx+21xdxy2log(y+2)=x+2logx+CyxC=logx2+log(y+2)2yxC=log[x2(y+2)2]   ...(i) Now, the curve passes through point (1,1) .  11C=log[(1)2(1+2)2]2C=log1=0C=2 Substituting C=2 in equation (i), we get: yx+2=log[x2(y+2)2] This is the required solution of the given curve.

Q17. Find the equation of a curve passing through the point (0, –2) given that at any point on the curve, the product of the slope of its tangent and y-coordinate of the point is equal to the x-coordinate of the point.

Answer. Let x and y be the x-coordinate and y-coordinate of the curve respectively. We know that the slope of a tangent to the curve in the coordinate axis is given by the relation, dydx According to the given information, we get: ydydx=xydy=xdx Integrating both sides, we get: ydy=xdx y22=x22+Cy2x2=2C   ...(i) Now, the curve passes through point (0,2) . (2)202=2C 

Q18. At any point (x, y) of a curve, the slope of the tangent is twice the slope of the line segment joining the point of contact to the point (–4, –3). Find the equation of the curve given that it passes through (–2, 1).

Answer.  It is given that (x,y) is the point of contact of the curve and its tangent.  The slope (m1) of the line segment joining (x,y) and (4,3) is y+3x+4 We know that the slope of the tangent to the curve is given by the relation, dydx  Slope (m2) of the tangent =dydx According to the given information: m2=2m1dydx=2(y+3)x+4dyy+3=2dxx+4 Integrating both sides, we get:  dyy+3=2dxx+4log(y+3)=2log(x+4)+logClog(y+3)logC(x+4)2y+3=C(x+4)2   ...(i) This is the general equation of the curve.  It is given that it passes through point (-2, 1).  

Q19. The volume of spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of balloon after t seconds.

Answer. Let the rate of change of the volume of the balloon be k (where k is a constant). dvdt=k ddt(43πr3)=k       [ Volume of sphere =43πr3] 43π3r2drdt=k4πr2dr=kdt Integrating both sides, we get: 4πr2dr=kdt4πr33=kt+C 4πr3=3(kt+C)   ...(i) Now, at t=0,r=3: ⇒ 4π × 33 = 3 (k × 0 + C) ⇒ 108π = 3C ⇒ C = 36π At t = 3, r = 6: ⇒ 4π × 63 = 3 (k × 3 + C) ⇒ 864π = 3 (3k + 36π) ⇒ 3k = –288π – 36π = 252π ⇒ k = 84π Substituting the values of k and C in equation (i), we get: 

Q20. In a bank, principal increases continuously at the rate of r% per year. Find the value of r if Rs 100 doubles itself in 10 years (log­e 2 = 0.6931).

Answer. Let p, t, and r represent the principal, time, and rate of interest respectively. It is given that the principal increases continuously at the rate of r% per year. dpdt=(r100)pdpp=(r100)dt Integrating both sides, we get:  dpp=r100dtlogp=rt100+kp=en100+k+k   ...(i)  It is given that when t=0,p=100 . 100=ek(ii) Now, if t = 10, then p = 2 × 100 = 200. Therefore, equation (i) becomes: 200=er10+k200=er10et200=e10100   ...[from(ii)] 

Q21. 

Answer. Let p and t be the principal and time respectively. It is given that the principal increases continuously at the rate of 5% per year. dpdt=(5100)pdpdt=p20dpp=dt20 Integrating both sides, we get: dpp=120dt logp=t20+Cp=et20+C   ...(i) Now, when t = 0, p = 1000. ⇒ 1000 = eC … (ii) At t = 10, equation (i) becomes: 

Q22. In a culture, the bacteria count is 1,00,000. The number is increased by 10% in 2 hours. In how many hours will the count reach 2,00,000, if the rate of growth of bacteria is proportional to the number present?

Answer. Let y be the number of bacteria at any instant t. It is given that the rate of growth of the bacteria is proportional to the number present. dydtydydt=ky (where k is a constant) dyy=kdt Integrating both sides, we get: dyy=kdt logy=kt+C   ...(i) Let y0 be the number of bacteria at t=0 . logy0=c  Substituting the value of C in equation (i), we get: logy=kt+logy0logylogy0=ktlog(yy0)=ktkt=log(yy0)kt=log(yy0)   ...(ii) Also, it is given that the number of bacteria increases by 10% in 2 hours.  y=110100y0yy0=1110   ...(iii) Substituting this value in equation (ii), we get: k2=log(1110)k=12log(1110)k=12log(1110) Therefore, equation (ii) becomes:  12log(1110)t=log(yy0)t=2log(yy0)log(1110)   ...(iv)  Now, let the time when the number of bacteria increases from 100000 to 200000 be t1 . y=2y0 at t=t1 From equation (iv), we get:  

Q23. 

Answer. dydx=ex+y=exeydyey=exdxeydy=exdx Integrating both sides, we get: eydy=exdx 

Chapter-9 (Determinants)