NCERT Solutions Class 12 Maths Chapter-7 (Integrals)Exercise 7.9
NCERT Solutions Class 12 Maths from class
12th Students will get the answers of
Chapter-7 (Integrals)Exercise 7.9 This chapter will help you to learn the basics and you should expect at least one question in your exam from this chapter.
We have given the answers of all the questions of
NCERT Board Mathematics Textbook in very easy language, which will be very easy for the students to understand and remember so that you can pass with good marks in your examination.
Exercise 7.9
Q1. Evaluate the definite integral : ∫1−1(x+1)dx
Answer. Let I=∫4−1(x+1)dx∫(x+1)dx=x22+x=F(x) By second fundamental theorem of calculus , we obtain I=F(1)−F(−1) =(12+1)−(12−1)=12+1−12+1=2
Q2. Evaluate the definite integral : ∫1x1xdx
Answer. Let I=∫321xdx∫1xdx=log|x|=F(x) By second fundamental theorem of calculus , we obtain I=F(3)−F(2)=log|3|−log|2|=log32
Q3. Evaluate the definite integral : ∫2(4x3−5x2+6x+9)dx
Answer. Let I=∫(4x3−5x2+6x+9)dx∫(4x3−5x2+6x+9)dx=4(x44)−5(x33)+6(x22)+9(x)=x4−5x33+3x2+9x=F(x) By second fundamental theorem of calculus , we obtain I=F(2)−F(1)I={24−5⋅(2)33+3(2)2+9(2)}−{(1)4−5(1)33+3(1)2+9(1)}=(16−403+12+18)−(1−53+3+9)=16−403+12+18−1+53−3−9=33−353=99−353=643
Q4. Evaluate the definite integral : ∫x0sin2xdx
Answer. Let I=∫π0sin2xdx∫sin2xdx=(−cos2x2)=F(x) By second fundamental theorem of calculus , we obtain I=F(π4)−F(0)=−12[cos2(14)−cos0]=−12[cos(−2)−cos0]=−12[0−1]=12
Q5. Evaluate the definite integral : ∫x2cos2xdx
Answer. Let I=∫π20cos2xdx∫cos2xdx=(sin2x2)=F(x) By second fundamental theorem of calculus , we obtain I=F(π2)−F(0)=12[sin2(π2)−sin0]=12[sinπ−sin0]=12[0−0]=0
Q6. Evaluate the definite integral : ∫61exdx
Answer. Let I=∫64exdx∫exdx=ex=F(x) By second fundamental theorem of calculus , we obtain I=F(5)−F(4)=e5−e4=e4(e−1)
Q7. Evaluate the definite integral : ∫x0tanxdx
Answer. Let I=∫π5tanxdx∫tanxdx=−log|cosx|=F(x) By second fundamental theorem of calculus , we obtain I=F(π4)−F(0)=−log∣∣cosπ4∣∣+log|cos0|=−log∣∣∣1√2|+log∣∣∣l|=−log(2)−12=12log2
Q8. Evaluate the definite integral : ∫π46cosecxdx
Answer. I=∫π4πcosecxdx ∫cscxdx=log|cscx−cotx|=F(x) By second fundamental theorem of calculus , we obtain I=F(π4)−F(π6)=log∣∣cscπ4−cotπ4∣∣−log∣∣cscπ6−cotπ6∣∣=log|√2−1|−log|2−√3|=log(√2−12−√3)
Q9. Evaluate the definite integral : ∫40dx√1−x2
Answer. Let I=∫40dx√1−x2∫dx√1−x2=sin−1x=F(x) By second fundamental theorem of calculus , we obtain I=F(1)−F(0)=sin−1(1)−sin−1(0)=π2−0=π2
Q10. Evaluate the definite integral : ∫dx1+x2
Answer. Let I=∫dx1+x2∫dx1+x2=tan−1x=F(x) By second fundamental theorem of calculus , we obtain I=F(1)−F(0)=tan−1(1)−tan−1(0)=π4
Q11. Evaluate the definite integral : ∫32dxx2−1
Answer. Let I=∫32dxx2−1∫dxx2−1=12log∣∣x−1x+1∣∣=F(x) By second fundamental theorem of calculus , we obtain I=F(3)−F(2)=12[log∣∣∣3−13+1∣∣∣−log|2−12+1]=12[log∣∣∣24∣∣∣−log13]=12[log12−log13]=12[log32]
Q12. Evaluate the definite integral : ∫π20cos2xdx
Answer. Let I=∫π21cos2xdx∫cos2xdx=∫(1+cos2x2)dx=x2+sin2x4=12(x+sin2x2)=F(x) By second fundamental theorem of calculus , we obtain I=[F(π2)−F(0)]=12[(π2−sinπ2)−(0+sin02)]=12[π2+0−0−0]=π4
Q13. Evaluate the definite integral : ∫32xdxx2+1
Answer. Let I=∫32xx2+1dx∫xx2+1dx=12∫2xx2+1dx=12log(1+x2)=F(x) By second fundamental theorem of calculus , we obtain I=F(3)−F(2)=12[log(1+(3)2)−log(1+(2)2)]=12[log(10)−log(5)]=12log(105)=12log2
Q14. Evaluate the definite integral : ∫2x+35x2+1dx
Answer. I=∫402x+35x2+1dx ∫2x+35x2+1dx=15∫5(2x+3)5x2+1dx=15∫10x+155x2+1dx=15∫10x5x2+1dx+3∫15x2+1dx =15∫10x5x2+1dx+3∫15(x2+15)dx=15log(5x2+1)+35⋅1√5tan−1x√5=15log(5x2+1)+3√5tan−1(√5x)=F(x) By second fundamental theorem of calculus , we obtain I=F(1)−F(0)={15log(5+1)+3√5tan−1(√5)}−{15log(1)+3√5tan−1(0)}=15log6+3√5tan−1√5
Q15. Evaluate the definite integral : ∫10xex2dx
Answer. Let I=∫0xex2dx Put x2=t⇒2xdx=dt As x→0,t→0 and as x→1,t→1 By second fundamental theorem of calculus , we obtain I=F(1)−F(0)=12e−12e0=12(e−1)
Q16. Evaluate the definite integral : ∫5x2x2+4x+3
Answer. Let I=∫2i5x2x2+4x+3dx Dividing 5x2 by x2+4x+3 we obtain I=∫21{5−20x+15x2+4x+3}dx=∫21{5dx−∫2120x+15x2+4x+3dx=[5x]21−∫2120x+15x2+4x+3dxI=5−I1, where I=∫2120x+15x2+4x+3dx Consider I1=∫2i20x+15x2+4x+8dx Consider I1=∫2120x+15x2+4x+8dx Let 20x+15=Addx(x2+4x+3)+B=2Ax+(4A+B) Equating the coefficients of x and constant term, we obtain A=10 and B=−25⇒I1=10∫2x+4x2+4x+3dx−25∫21dxx2+4x+3 Let x2+4x+3=t⇒(2x+4)dx=dt ⇒I1=10∫dtt−25∫dx(x+2)2−12=10logt−25[12log(x+2−1x+2+1)]=[10log(x2+4x+3)]21−25[12log(x+1x+3)]21=[10log15−10log8]−25[12log35−12log24]=[10log(5×3)−10log(4×2)]−252[log3−log5−log2+log4] =[10log5+10log3−10log4−10log2]−252[log3−log5−log2+log4]=[10+252]log5+[−10−252]log4+[10−252]log3+[−10+252]log2=452log5−452log4−52log3+52log2=452log54−52log32 Substituting the value of I1 in (1), we obtain I=5−[452log54−52log32]=5−52[9log54−log32]
Q17. Evaluate the definite integral : ∫π0(2sec2x+x3+2)dx
Answer. Let I=∫π45(2sec2x+x3+2)dx∫(2sec2x+x3+2)dx=2tanx+x44+2x=F(x) By second fundamental theorem of calculus , we obtain I=F(π4)−F(0)={(2tanπ4+14(π4)4+2(π4))−(2tan0+0+0)}=2tanπ4+π445+π2=2+π2+π41024
Q18. Evaluate the definite integral : ∫a0(sin2x2−cos2x2)dx
Answer. Let I=∫π0(sin2x2−cos2x2)dx=−∫π0(cos2x2−sin2x2)dx=−∫π0cosxdx∫cosxdx=sinx=F(x) By second fundamental theorem of calculus , we obtain I=F(π)−F(0)=sinπ−sin0=0
Q19. Evaluate the definite integral : ∫206x+3x2+4dx
Answer. Let I=∫206x+3x2+4dx∫6x+3x2+4dx=3∫2x+1x2+4dx=3∫2xx2+4dx+3∫1x2+4dx=3log(x2+4)+32tan−1x2=F(x) By second fundamental theorem of calculus , we obtain I=F(2)−F(0)={3log(22+4)+32tan−1(22)}−{3log(0+4)+32tan−1(02)}=3log8+32tan−11−3log4−32tan−10=3log8+32(π4)−3log4−0=3log(84)+3π8=3log2+3π8
Q20. Evaluate the definite integral : ∫10(xex+sinπx4)dx
Answer. I=∫10(xex+sinπx4)dx ∫(xex+sinπx4)dx=x∫exdx−∫{(ddxx)∫exdx}dx+{−cosπx4π4} =xex−∫exdx−4ππcosx4=xex−ex−4ππcosx4=F(x) By second fundamental theorem of calculus , we obtain I=F(1)−F(0)=(1.e1−e1−4πcosπ4)−(0.e0−e0−4πcos0)=e−e−4π(1√2)+1+4π=1+4π−2√2π
Q21. Choose the correct answer : ∫√3dx1+x2 equals (A) π3 (B) 2π3 (C) π6 (D) π12
Answer. ∫dx1+x2=tan−1x=F(x) By second fundamental theorem of calculus , we obtain ∫√3dx1+x2=F(√3)−F(1)=tan−1√3−tan−11=π3−π4=π12 Hence, the correct Answer is D.
Q22. Choose the correct answer : ∫230dx4+9x2 equals (A) π6 (B) π12 (C) π24 (D) π4
Answer. ∫dx4+9x2=∫dx(2)2+(3x)2 Put 3x=t⇒3dx=dt∴∫dx(2)2+(3x)2=13∫dt(2)2+t2=13[12tan−1t2]=16tan−1(3x2)=F(x) By second fundamental theorem of calculus , we obtain ∫230dx4+9x2=F(23)−F(0)=16tan−1(32⋅23)−16tan−10=16tan−11−0=16×π4=π24 Hence the correct answer is C
Chapter-7 (integrals)