NCERT Solutions Class 12 maths Chapter-7 (Integrals)Exercise 7.6

NCERT Solutions Class 12 maths Chapter-7 (Integrals)Exercise 7.6

NCERT Solutions Class 12 Maths from class 12th Students will get the answers of Chapter-7 (Integrals)Exercise 7.6 This chapter will help you to learn the basics and you should expect at least one question in your exam from this chapter.
We have given the answers of all the questions of NCERT Board Mathematics Textbook in very easy language, which will be very easy for the students to understand and remember so that you can pass with good marks in your examination.
NCERT Solutions Class 12 maths Chapter-7 (Integrals)Exercise 7.6

Exercise 7.6

Q1. Integrate the function :

Answer. Let I=xsinxdx Taking x as first function and sin x as second function and integrating by parts, we obtain I=xsinxdx{(ddxx)sinxdx}dx 

Q2. Integrate the function :

Answer. Let I=xsin3xdx Taking x as first function and sin 3x as second function and integrating by parts, we obtain I=xsin3xdx{(ddxx)sin3xdx} 

Q3. Integrate the function :x2ex

Answer. Let I=x2exdx Taking x2 as first function and ex as second function and integrating by parts, we obtain I=x2exdx{(ddxx2)exdx}dx=x2ex2xexdx=x2ex2xexdx Again integrating by parts, we obtain 

Q4. Integrate the function :

Answer. Let I=xlogxdx Taking log x as first function and x as second function and integrating by parts, we obtain 

Q5. Integrate the function :

Answer. Let I=xlog2xdx Taking log 2x as first function and x as second function and integrating by parts, we obtain 

Q6. Integrate the function :x2logx

Answer. Let I=x2logxdx Taking log x as first function and x2 as second function and integrating by parts, we obtain 

Q7. Integrate the function :xsin1x

Answer. Let I=xsin1xdx Taking sin1x as first function and x as second function and integrating by parts, we obtain I=sin1xxdx{(ddxsin1x)xdx}dx =sin1x(x22)11x2x22dx =x2sin1x2+12x21x2dx=x2sin1x2+12{1x21x211x2}dx =x2sin1x2+12{1x211x2}dx=x2sin1x2+12{1x2dx11x2dx}=x2sin1x2+12{x21x2+12sin1xsin1x}+C=x2sin1x2+x41x2+14sin1x12sin1x+C 

Q8. Integrate the function :xtan1x

Answer. Let I=xtan1xdx Taking tan1x as first function and x as second function and integrating by parts, we obtain I=tan1xxdx{(ddxtan1x)xdx}dx=tan1x(x22)11+x2x22dx=x2tan1x212x21+x2dx 

Q9. Integrate the function :

Answer. Let I=xcos1xdx Taking  as first function and x as second function and integrating by parts, we obtain I=cos1xxdx{(ddxcos1x)xdx}dx=cos1xx2211x2x22dx=x2cos1x2121x211x2dx=x2cos1x212{1x2+(11x2)}dx=x2cos1x2121x2dx12(11x2)dx =x2cos1x212I112cos1x where, I1=1x2dxI1=x1x2ddx1x2xdxI1=x1x22x21x2xdx =x2cos1x2121x211x2dx=x2cos1x212{1x2+(11x2)}dx=x2cos1x2121x2dx12(11x2)dx=x2cos1x212I112cos1x =x2cos1x212{1x2+(11x2)}dx=x2cos1x2121x2dx12(11x2)dx=x2cos1x212I112cos1x  where, I1=1x2dxI1=x1x2ddx1x2xdxI1=x1x22x21x2xdxI1=x1x2x21x2dxI1=x1x21x211x2dx I1=x1x21x11x2dxI1=x1x2{1x2dx+dx1x2}I1=x1x2{I1+cos1x}2I1=x1x2cos1xI1=x21x212cos1x Substituting in (1) , we obtain 

Q10. Integrate the function :(sin1x)2

Answer. Let I=(sin1x)21dx Taking (sin1x)2 as first function and 1 as second function and integrating by parts, we obtain I=(sin1x)1dx{ddx(sin1x)21dx}dx=(sin1x)2x2sin1x1x2xdx=x(sin1x)2+sin1x(2x1x2)dx =x(sin1x)2+[sin1x2x1x2dx{(ddxsin1x)2x1x2dx}dx]=x(sin1x)2+[sin1x21x211x221x2dx] 

Q11. Integrate the function :

Answer. Let I=xcos1x1x2dx I=122x1x2cos1xdx Taking cos1x as first function and (2x1x2) as second function and integrating by parts, we obtain 

Q12. Integrate the function :xsec2x

Answer. Let I=xsec2xdx Taking x as first function and sec2x as second function and integrating by parts, we obtain 

Q13. Integrate the function :tan1x

Answer. Let I=1tan1xdx Taking tan1x as first function and 1 as second function and integrating by parts, we obtain I=tan1x1dx{(ddxtan1x)1dx}dx =tan1xx11+x2xdx=xtan1x122x1+x2dx 

Q14. Integrate the function :x(logx)2

Answer. I=x(logx)2dx Taking (logx)2 as first function and 1 as second function and integrating by parts, we obtain I=(logx)2xdx{(ddxlogx)}xdx]dx=x22(logx)2[2logx1xx22dx]=x22(logx)2xlogxdx Again integrating by parts , we obtain 

Q15. Integrate the function :(x2+1)logx

Answer.

Let I=(x2+1)logxdx=x2logxdx+logxdx Let I=I1+I2(1) Where I1=x2logxdx and I2=logxdx I1=x2logxdx Taking log x as first function and x2 as second function and integrating by parts , we obtain I1=logxx2dx{(ddxlogx)x2dx}dx=logxx331xx33dx=x33logx13(x2dx)=x33logxx39+C1I2=logxdx Taking log x as first function and 1 as second function and integrating by parts , we obtain I2=logx1dx{(ddxlogx)1dx}=logxx1xxdx=xlogx1dx=xlogxx+C2 Using equations (2) and (3) in (1) , we obtain 

Q16. Integrate the function :ex(sinx+cosx)

Answer.

 Let I=ex(sinx+cosx)dx Let f(x)=sinx f(x)=cosxI=ex{f(x)+f(x)}dx It is known that , ex{f(x)+f(x)}dx=exf(x)+C 

Q17. Integrate the function :

Answer. Let I=xex(1+x)2dx=ex{x(1+x)2}dx =ex{1+x1(1+x)2}dx=ex{11+x1(1+x)2}dx Let f(x)=11+xf(x)=1(1+x)2 xex(1+x)2dx=ex{f(x)+f(x)}dx It is known that, ex{f(x)+f(x)}dx=exf(x)+C 

Q18. Integrate the function :

Answer. ex(1+sinx1+cosx)=ex(sin2x2+cos2x2+2sinx2cosx2)2cos2x2)=ex(sinx2+cosx2)22cos2x2 =12ex(sinx2+cosx2cosx2)2=12ex[tanx2+1]2=12e2(1+tanx2)2 =12ex[1+tan2x2+2tanx2]=12ex[1+tan2x2+2tanx2]ex(1+sinx)dx(1+cosx)=ex[12sec2x2+tanx2] Let tanx2=f(x)f(x)=12sec2x2 It is known that ex{f(x)+f(x)}dx=exf(x)+C From equation (1) , we obtain 

Q19. Integrate the function :

Answer. Let I=ex[1x1x2]dx Also let 1x=f(x)f(x)=1x2 It is known that, ex{f(x)+f(x)}dx=exf(x)+C 

Q20. Integrate the function :(x3)ex(x1)3

Answer. ex{x3(x1)3}dx=ex{x12(x1)3}dx=ex{1(x1)22(x1)3}dx f(x)=1(x1)2f(x)=2(x1)3 It is known that, ex{f(x)+f(x)}dx=exf(x)+C 

Q21. Integrate the function :

Answer.

 Let I=e2xsinxdx …(1) Integrating by parts , we obtain I=sinxe2xdx{(ddxsinx)e2xdx}dxI=sinxe2x2cosxe2x2dxI=e2xsinx212e2xcosxdx Again integrating by parts, we obtain I=e2xsinx212[cosxe2xdx{(ddxcosx)e2xdx}dx]I=e2xsinx212[cosxe2x2(sinx)e2x2dx]I=e2xsinx212[e2xcosx2+12e2xsinxdx]I=e2xsinx2e2xcosx414I 

Q22. Integrate the function :

Answer. Let x=tanθdx=sec2θdθ sin1(2x1+x2)=sin1(2tanθ1+tan2θ)=sin1(sin2θ)=2θsin1(2x1+x2)dx=2θsec2θdθ=2θsec2θdθ Integrating by parts, we obtain 2[θsec2θdθ{(ddθθ)sec2θdθ}dθ]=2[θtanθtanθdθ]=2[θtanθ+log|cosθ]+C=2[xtan1x+log|11+x2|]+C 

Q23. Choose the correct answer : x2ex3dx equals (A) 13ex3+C (B) 13ex2+C (C) 12ex3+C (D) 

Answer. Let I=x2ex3dx Also , let x3=t3x2dx=dt I=13edt=13(et)+C=13ex3+C Hence , the correct answer is A .

Q24. Choose the correct answer : exsecx(1+tanx)dx equals (A) excosx+C (B) exsecx+C (C) exsinx+C (D) 

Answer. exsecx(1+tanx)dx Let I=exsecx(1+tanx)dx=ex(secx+secxtanx)dx Also, let secx=f(x)secxtanx=f(x) It is known that , ex{f(x)+f(x)}dx=exf(x)+C I=exsecx+C Hence, the correct Answer is B.

Chapter-7 (integrals)