NCERT Solutions Class 12 maths Chapter-7 (Integrals)Exercise 7.6
NCERT Solutions Class 12 Maths from class
12th Students will get the answers of
Chapter-7 (Integrals)Exercise 7.6 This chapter will help you to learn the basics and you should expect at least one question in your exam from this chapter.
We have given the answers of all the questions of
NCERT Board Mathematics Textbook in very easy language, which will be very easy for the students to understand and remember so that you can pass with good marks in your examination.
Exercise 7.6
Q1. Integrate the function :xsinx
Answer. Let I=∫xsinxdx Taking x as first function and sin x as second function and integrating by parts, we obtain I=x∫sinxdx−∫{(ddxx)∫sinxdx}dx =x(−cosx)−∫1⋅(−cosx)dx=−xcosx+sinx+C
Q2. Integrate the function :xsin3x
Answer. Let I=∫xsin3xdx Taking x as first function and sin 3x as second function and integrating by parts, we obtain I=x∫sin3xdx−∫{(ddxx)∫sin3xdx} =x(−cos3x3)−∫1⋅(−cos3x3)dx=−xcos3x3+13∫cos3xdx=−xcos3x3+19sin3x+C
Q3. Integrate the function :x2exx2ex
Answer. Let I=∫x2exdx Taking x2 as first function and ex as second function and integrating by parts, we obtain I=x2∫exdx−∫{(ddxx2)∫exdx}dx=x2ex−∫2x⋅exdx=x2ex−2∫x⋅exdx Again integrating by parts, we obtain =x2ex−2[x⋅∫exdx−∫{(ddxx)⋅∫exdx}dx]=x2ex−2[xex−∫exdx]=x2ex−2[xex−ex]=x2ex−2xex+2ex+C=ex(x2−2x+2)+CQ4. Integrate the function :xlogx
Answer. Let I=∫xlogxdx Taking log x as first function and x as second function and integrating by parts, we obtain I=logx∫xdx−∫{(ddxlogx)∫xdx}dx=logx⋅x22−∫1x⋅x22dx=x2logx2−∫x2dx=x2logx2−x24+C
Q5. Integrate the function :xlog2x
Answer. Let I=∫xlog2xdx Taking log 2x as first function and x as second function and integrating by parts, we obtain I=log2x∫xdx−∫{(ddx2logx)∫xdx}dx=log2x⋅x22−∫22x⋅x22dx=x2log2x2−∫x2dx=x2log2x2−x24+C
Q6. Integrate the function :x2logxx2logx
Answer. Let I=∫x2logxdx Taking log x as first function and x2 as second function and integrating by parts, we obtain I=logx∫x2dx−∫{(ddxlogx)∫x2dx}dx=logx(x33)−∫1x⋅x33dx=x3logx3−∫x23dx=x3logx3−x39+C
Q7. Integrate the function :xsin−1xxsin−1x
Answer. Let I=∫xsin−1xdx Taking sin−1x as first function and x as second function and integrating by parts, we obtain I=sin−1x∫xdx−∫{(ddxsin−1x)∫xdx}dx =sin−1x(x22)−∫1√1−x2⋅x22dx =x2sin−1x2+12∫−x2√1−x2dx=x2sin−1x2+12∫{1−x2√1−x2−1√1−x2}dx =x2sin−1x2+12∫{√1−x2−1√1−x2}dx=x2sin−1x2+12{∫√1−x2dx−∫1√1−x2dx}=x2sin−1x2+12{x2√1−x2+12sin−1x−sin−1x}+C=x2sin−1x2+x4√1−x2+14sin−1x−12sin−1x+C =14(2x2−1)sin−1x+x4√1−x2+C
Q8. Integrate the function :xtan−1xxtan−1x
Answer. Let I=∫xtan−1xdx Taking tan−1x as first function and x as second function and integrating by parts, we obtain I=tan−1x∫xdx−∫{(ddxtan−1x)∫xdx}dx=tan−1x(x22)−∫11+x2⋅x22dx=x2tan−1x2−12∫x21+x2dx =x2tan−1x2−12∫(x2+11+x2−11+x2)dx=x2tan−1x2−12∫(1−11+x2)dx=x2tan−1x2−12(x−tan−1x)+C=x22tan−1x−x2+12tan−1x+C
Q9. Integrate the function :xcos−1x
Answer. Let I=∫xcos−1xdx Taking as first function and x as second function and integrating by parts, we obtain I=cos−1x∫xdx−∫{(ddxcos−1x)∫xdx}dx=cos−1xx22−∫−1√1−x2⋅x22dx=x2cos−1x2−12∫1−x2−1√1−x2dx=x2cos−1x2−12∫{√1−x2+(−1√1−x2)}dx=x2cos−1x2−12∫√1−x2dx−12∫(−1√1−x2)dx =x2cos−1x2−12I1−12cos−1x where, I1=∫√1−x2dx⇒I1=x√1−x2−∫ddx√1−x2∫xdx⇒I1=x√1−x2−∫−2x2√1−x2⋅xdx =x2cos−1x2−12∫1−x2−1√1−x2dx=x2cos−1x2−12∫{√1−x2+(−1√1−x2)}dx=x2cos−1x2−12∫√1−x2dx−12∫(−1√1−x2)dx=x2cos−1x2−12I1−12cos−1x =x2cos−1x2−12∫{√1−x2+(−1√1−x2)}dx=x2cos−1x2−12∫√1−x2dx−12∫(−1√1−x2)dx=x2cos−1x2−12I1−12cos−1x where, I1=∫√1−x2dx⇒I1=x√1−x2−∫ddx√1−x2∫xdx⇒I1=x√1−x2−∫−2x2√1−x2⋅xdx⇒I1=x√1−x2−∫−x2√1−x2dx⇒I1=x√1−x2−∫1−x2−1√1−x2dx ⇒I1=x√1−x2−∫1−x−1√1−x2dx⇒I1=x√1−x2−{∫√1−x2dx+∫−dx√1−x2}⇒I1=x√1−x2−{I1+cos−1x}⇒2I1=x√1−x2−cos−1x∴I1=x2√1−x2−12cos−1x Substituting in (1) , we obtain I=xcos−1x2−12(x2√1−x2−12cos−1x)−12cos−1x=(2x2−1)4cos−1x−x4√1−x2+C
Q10. Integrate the function :(sin−1x)2(sin−1x)2
Answer. Let I=∫(sin−1x)2⋅1dx Taking (sin−1x)2 as first function and 1 as second function and integrating by parts, we obtain I=(sin−1x)∫1dx−∫{ddx(sin−1x)2⋅∫1⋅dx}dx=(sin−1x)2⋅x−∫2sin−1x√1−x2⋅xdx=x(sin−1x)2+∫sin−1x⋅(−2x√1−x2)dx =x(sin−1x)2+[sin−1x∫−2x√1−x2dx−∫{(ddxsin−1x)∫−2x√1−x2dx}dx]=x(sin−1x)2+[sin−1x⋅2√1−x2−∫1√1−x2⋅2√1−x2dx] =x(sin−1x)2+2√1−x2sin−1x−∫2dx=x(sin−1x)2+2√1−x2sin−1x−2x+C
Q11. Integrate the function :xcos−1x√1−x2
Answer. Let I=∫xcos−1x√1−x2dx I=−12∫−2x√1−x2⋅cos−1xdx Taking cos−1x as first function and (−2x√1−x2) as second function and integrating by parts, we obtain I=−12[cos−1x∫−2x√1−x2dx−∫{(ddxcos−1x)∫−2x√1−x2dx}dx]=−12[cos−1x⋅2√1−x2−∫−1√1−x2⋅2√1−x2dx]=−12[2√1−x2cos−1x+∫2dx]=−12[2√1−x2cos−1x+2x]+C=−[√1−x2cos−1x+x]+C
Q12. Integrate the function :xsec2xxsec2x
Answer. Let I=∫xsec2xdx Taking x as first function and sec2x as second function and integrating by parts, we obtain I=x∫sec2xdx−∫{{ddxx}∫sec2xdx}dx=xtanx−∫1⋅tanxdx=xtanx+log|cosx|+C
Q13. Integrate the function :tan−1xtan−1x
Answer. Let I=∫1⋅tan−1xdx Taking tan−1x as first function and 1 as second function and integrating by parts, we obtain I=tan−1x∫1dx−∫{(ddxtan−1x)∫1⋅dx}dx =tan−1x⋅x−∫11+x2⋅xdx=xtan−1x−12∫2x1+x2dx =xtan−1x−12log∣∣1+x2∣∣+C=xtan−1x−12log(1+x2)+C
Q14. Integrate the function :x(logx)2x(logx)2
Answer. I=∫x(logx)2dx Taking (logx)2 as first function and 1 as second function and integrating by parts, we obtain I=(logx)2∫xdx−∫{(ddxlogx)−}∫xdx]dx=x22(logx)2−[2logx⋅1x⋅x22dx]=x22(logx)2−∫xlogxdx Again integrating by parts , we obtain I=x22(logx)2−[logx∫xdx−∫{(ddxlogx)∫xdx}dx]=x22(logx)2−[x22−logx−∫1x⋅x22dx]=x22(logx)2−x22logx+12∫xdx=x22(logx)2−x22logx+x24+C
Q15. Integrate the function :(x2+1)logx(x2+1)logx
Let I=∫(x2+1)logxdx=∫x2logxdx+∫logxdx Let I=I1+I2…(1) Where I1=∫x2logxdx and I2=∫logxdx I1=∫x2logxdx Taking log x as first function and x2 as second function and integrating by parts , we obtain I1=logx−∫x2dx−∫{(ddxlogx)∫x2dx}dx=logx⋅x33−∫1x⋅x33dx=x33logx−13(∫x2dx)=x33logx−x39+C1I2=∫logxdx Taking log x as first function and 1 as second function and integrating by parts , we obtain I2=logx∫1⋅dx−∫{(ddxlogx)∫1⋅dx}=logx⋅x−∫1x⋅xdx=xlogx−∫1dx=xlogx−x+C2 Using equations (2) and (3) in (1) , we obtain I=x33logx−x39+C1+xlogx−x+C2=x33logx−x39+xlogx−x+(C1+C2)=(x33+x)logx−x39−x+C
Q16. Integrate the function :ex(sinx+cosx)ex(sinx+cosx)
Let I=∫ex(sinx+cosx)dx Let f(x)=sinx f′(x)=cosxI=∫ex{f(x)+f′(x)}dx It is known that , ∫ex{f(x)+f′(x)}dx=exf(x)+C ∴I=exsinx+C
Q17. Integrate the function :xex(1+x)2
Answer. Let I=∫xex(1+x)2dx=∫ex{x(1+x)2}dx =∫ex{1+x−1(1+x)2}dx=∫ex{11+x−1(1+x)2}dx Let f(x)=11+xf′(x)=−1(1+x)2 ⇒∫xex(1+x)2dx=∫ex{f(x)+f′(x)}dx It is known that, ∫ex{f(x)+f′(x)}dx=exf(x)+C ∴∫xex(1+x)2dx=ex1+x+C
Q18. Integrate the function :ex(1+sinx1+cosx)
Answer. ex(1+sinx1+cosx)=ex(sin2x2+cos2x2+2sinx2cosx2)2cos2x2)=ex(sinx2+cosx2)22cos2x2 =12ex⋅(sinx2+cosx2cosx2)2=12ex[tanx2+1]2=12e2(1+tanx2)2 =12ex[1+tan2x2+2tanx2]=12ex[1+tan2x2+2tanx2]ex(1+sinx)dx(1+cosx)=ex[12sec2x2+tanx2] Let tanx2=f(x)f′(x)=12sec2x2 It is known that ∫ex{f(x)+f′(x)}dx=exf(x)+C From equation (1) , we obtain ∫ex(1+sinx)(1+cosx)dx=extanx2+C
Q19. Integrate the function :ex(1x−1x2)
Answer. Let I=∫ex[1x−1x2]dx Also let 1x=f(x)f′(x)=−1x2 It is known that, ∫ex{f(x)+f′(x)}dx=exf(x)+C ∴I=exx+C
Q20. Integrate the function :(x−3)ex(x−1)3(x−3)ex(x−1)3
Q21. Integrate the function :e2xsinx
Answer.
Let I=∫e2xsinxdxI=∫e2xsinxdx …(1) Integrating by parts , we obtain I=sinx∫e2xdx−∫{(ddxsinx)∫e2xdx}dx⇒I=sinx⋅e2x2−∫cosx⋅e2x2dx⇒I=e2xsinx2−12∫e2xcosxdxI=sinx∫e2xdx−∫{(ddxsinx)∫e2xdx}dx⇒I=sinx⋅e2x2−∫cosx⋅e2x2dx⇒I=e2xsinx2−12∫e2xcosxdx Again integrating by parts, we obtain I=e2x⋅sinx2−12[cosx∫e2xdx−∫{(ddxcosx)∫e2xdx}dx]⇒I=e2xsinx2−12[cosx⋅e2x2−∫(−sinx)e2x2dx]⇒I=e2x⋅sinx2−12[e2xcosx2+12∫e2xsinxdx]⇒I=e2xsinx2−e2xcosx4−14II=e2x⋅sinx2−12[cosx∫e2xdx−∫{(ddxcosx)∫e2xdx}dx]⇒I=e2xsinx2−12[cosx⋅e2x2−∫(−sinx)e2x2dx]⇒I=e2x⋅sinx2−12[e2xcosx2+12∫e2xsinxdx]⇒I=e2xsinx2−e2xcosx4−14I ⇒I+14I=e2x⋅sinx2−e2xcosx4⇒54I=e2xsinx2−e2xcosx4⇒I=45[e2xsinx2−e2xcosx4]+C⇒I=e2x5[2sinx−cosx]+C
Q22. Integrate the function :sin−1(2x1+x2)
Answer. Let x=tanθdx=sec2θdθx=tanθdx=sec2θdθ ∴sin−1(2x1+x2)=sin−1(2tanθ1+tan2θ)=sin−1(sin2θ)=2θ∫sin−1(2x1+x2)dx=∫2θ⋅sec2θdθ=2∫θ⋅sec2θdθ∴sin−1(2x1+x2)=sin−1(2tanθ1+tan2θ)=sin−1(sin2θ)=2θ∫sin−1(2x1+x2)dx=∫2θ⋅sec2θdθ=2∫θ⋅sec2θdθ Integrating by parts, we obtain 2[θ⋅∫sec2θdθ−∫{(ddθθ)∫sec2θdθ}dθ]=2[θ⋅tanθ−∫tanθdθ]=2[θtanθ+log|cosθ]+C=2[xtan−1x+log∣∣1√1+x2∣∣]+C2[θ⋅∫sec2θdθ−∫{(ddθθ)∫sec2θdθ}dθ]=2[θ⋅tanθ−∫tanθdθ]=2[θtanθ+log|cosθ]+C=2[xtan−1x+log|11+x2|]+C =2xtan−1x+2log(1+x2)12+C=2xtan−1x+2[−12log(1+x2)]+C=2xtan−1x−log(1+x2)+C
Q23. Choose the correct answer : ∫x2ex3dx∫x2ex3dx equals (A) 13ex3+C13ex3+C (B) 13ex2+C13ex2+C (C) 12ex3+C12ex3+C (D) 13ex2+C
Answer. Let I=∫x2ex3dxI=∫x2ex3dx Also , let x3=t3x2dx=dtx3=t3x2dx=dt ⇒I=13∫e′dt=13(et)+C=13ex3+C⇒I=13∫e′dt=13(et)+C=13ex3+C Hence , the correct answer is A .
Q24. Choose the correct answer : ∫exsecx(1+tanx)dx∫exsecx(1+tanx)dx equals (A) excosx+Cexcosx+C (B) exsecx+Cexsecx+C (C) exsinx+Cexsinx+C (D) extanx+C
Answer. ∫exsecx(1+tanx)dx∫exsecx(1+tanx)dx Let I=∫exsecx(1+tanx)dx=∫ex(secx+secxtanx)dxI=∫exsecx(1+tanx)dx=∫ex(secx+secxtanx)dx Also, let secx=f(x)secxtanx=f′(x)secx=f(x)secxtanx=f′(x) It is known that , ∫ex{f(x)+f′(x)}dx=exf(x)+C∫ex{f(x)+f′(x)}dx=exf(x)+C ∴I=exsecx+C∴I=exsecx+C Hence, the correct Answer is B.
Chapter-7 (integrals)