NCERT Solutions Class 12 Maths Chapter-7 (Integrals)Exercise 7.5
NCERT Solutions Class 12 Maths from class
12th Students will get the answers of
Chapter-7 (Integrals)Exercise 7.5 This chapter will help you to learn the basics and you should expect at least one question in your exam from this chapter.
We have given the answers of all the questions of
NCERT Board Mathematics Textbook in very easy language, which will be very easy for the students to understand and remember so that you can pass with good marks in your examination.
Exercise 7.5
Q1. Integrate the rational function : x(x+1)(x+2)
Answer. x Let x(x+1)(x+2)=A(x+1)+B(x+2)⇒x=A(x+2)+B(x+1) Equating the coefficients of x and constant term, we obtain A+B=12A+B=0 On solving, we obtain A=−1 and B=2 ∴x(x+1)(x+2)=−1(x+1)+2(x+2)⇒∫x(x+1)(x+2)dx=∫−1(x+1)+2(x+2)dx =−log|x+1|+2log|x+2|+C=log(x+2)2−log|x+1|+C=log(x+2)2(x+1)+C
Q2. Integrate the rational function : 1x2−9
Answer. 1(x+3)(x−3)=A(x+3)+B(x−3)1=A(x−3)+B(x+3) Equating the coefficients of x and constant term, we obtain A+B=0−3A+3B=1 On solving, we obtain A=−16 and B=16∴1(x+3)(x−3)=−16(x+3)+16(x−3) ⇒∫1(x2−9)dx=∫−16(x+3)+16(x−3))dx=−16log|x+3|+16log|x−3|+C=16log|(x−3)(x+3)|+C
Q3. Integrate the rational function : 3x−1(x−1)(x−2)(x−3)
Answer. 3x−1(x−1)(x−2)(x−3)=A(x−1)+B(x−2)+C(x−3)3x−1=A(x−2)(x−3)+B(x−1)(x−3)+C(x−1)(x−2) Substituting x=1,2, and 3 respectively in equation (1), we obtain A=1,B=−5, and C=4∴3x−1(x−1)(x−2)(x−3)=1(x−1)−5(x−2)+4(x−3) ⇒∫3x−1(x−1)(x−2)(x−3)dx=∫{1(x−1)−5(x−2)+4(x−3)}dx=log|x−1|−5log|x−2|+4log|x−3|+C
Q4. Integrate the rational function : x(x−1)(x−2)(x−3)
Answer. xLetx(x−1)(x−2)(x−3)=A(x−1)+B(x−2)+C(x−3)x=A(x−2)(x−3)+B(x−1)(x−3)+C(x−1)(x−2)...(1) Substituting x=1,2, and 3 respectively in equation (1), we obtain A=12,B=−2, and C=32∴x(x−1)(x−2)(x−3)=12(x−1)−2(x−2)+32(x−3) ⇒∫x(x−1)(x−2)(x−3)dx=∫{12(x−1)−2(x−2)+32(x−3)dx=12log|x−1|−2log|x−2|+32log|x−3|+C
Q5. Integrate the rational function : 2xx2+3x+2
Answer. 2xx2+3x+2=A(x+1)+B(x+2)2x=A(x+2)+B(x+1) Substituting x=−1 and −2 in equation (1), we obtain A=−2 and B=4 ∴2x(x+1)(x+2)=−2(x+1)+4(x+2)⇒∫2x(x+1)(x+2)dx=∫{4(x+2)−2(x+1)}dx=4log|x+2|−2log|x+1|+C
Q6. Integrate the rational function : 1−x2x(1−2x)
Answer. It can be seen that the given integrand is not a proper fraction. Therefore, on dividing (1−x2) by x(1−2x), we obtain 1−x2x(1−2x)=12+12(2−xx(1−2x)) 2−xx(1−2x)=Ax+B(1−2x)⇒(2−x)=A(1−2x)+Bx Substituting x=0 and 12 in equation (1), we obtain A=2 and B=3∴2−xx(1−2x)=2x+31−2x Substituting in equation (1), we obtain 1−x2x(1−2x)=12+12{2x+3(1−2x)}⇒∫1−x2x(1−2x)dx=∫{12+12(2x+31−2x)}dx =x2+log|x|+32(−2)log|1−2x|+C=x2+log|x|−34log|1−2x|+C
Q7. Integrate the rational function : x(x2+1)(x−1)
Answer. x(x2+1)(x−1)=Ax+B(x2+1)+C(x−1)x=(Ax+B)(x−1)+C(x2+1)x=Ax2−Ax+Bx−B+Cx2+C Equating the coefficients of x2,x, and constant term, we obtain A+C=0−A+B=1−B+C=0 On solving these equations, we obtain A=−12,B=12, and C=12 From equation (1), we obtain ∴x(x2+1)(x−1)=(−12x+12)x2+1+12(x−1)⇒∫x(x2+1)(x−1)=−12∫xx2+1dx+12∫1x2+1dx+12∫1x−1dx =−14∫2xx2+1dx+12tan−1x+12log|x−1|+C Consider ∫2xx2+1dx, let (x2+1)=t⇒2xdx=dt⇒∫2xx2+1dx=∫dtt=log|t|=log∣∣x2+1∣∣ ∴∫(x2+1)(x−1)=−14log∣∣x2+1∣∣+12tan−1x+12log|x−1|+C=12log|x−1|−14log|x2+1+12tan−1x|+C
Q8. Integrate the rational function : x(x−1)2(x+2)
Answer. x(x−1)2(x+2)=A(x−1)+B(x−1)2+C(x+2)x=A(x−1)(x+2)+B(x+2)+C(x−1)2 Substituting x=1, we obtain Substituting x=1, we obtain B=13 Equating the coefficients of x2 and constant term, we obtain A+C=0−2A+2B+C=0On solving, we obtain A=29 and C=−29∴x(x−1)2(x+2)=29(x−1)+13(x−1)2−29(x+2) ⇒∫x(x−1)2(x+2)dx=29∫1(x−1)dx+13∫1(x−1)2dx−29∫1(x+2)dx =29log|x−1|+13(−1x−1)−29log|x+2|+C=29log∣∣x−1x+2∣∣−13(x−1)+C
Q9. Integrate the rational function : 3x+5x3−x2−x+1
Answer. 3x+5x3−x2−x+1=3x+5(x−1)2(x+1)Let3x+5(x−1)2(x+1)=A(x−1)+B(x−1)2+C(x+1) 3x+5=A(x−1)(x+1)+B(x+1)+C(x−1)23x+5=A(x2−1)+B(x+1)+C(x2+1−2x) Substituting x=1 in equation (1), we obtain B=4 Equating the coefficients of x2 and x, we obtain A+C=0B−2C=3 On solving, we obtain A=−12 and C=12 ∴3x+5(x−1)2(x+1)=−12(x−1)+4(x−1)2+12(x+1)⇒∫3x+5(x−1)2(x+1)dx=−12∫1x−1dx+4∫1(x−1)2dx+12∫1(x+1)dx =−12log|x−1|+4(−1x−1)+12log|x+1|+C=12log∣∣x+1x−1∣∣−4(x−1)+C
Q10. Integrate the rational function : 2x−3(x2−1)(2x+3)
Answer. 2x−3(x2−1)(2x+3)=2x−3(x+1)(x−1)(2x+3)Let2x−3(x+1)(x−1)(2x+3)=A(x+1)+B(x−1)+C(2x+3) ⇒(2x−3)=A(x−1)(2x+3)+B(x+1)(2x+3)+C(x+1)(x−1)⇒(2x−3)=A(2x2+x−3)+B(2x2+5x+3)+C(x2−1)⇒(2x−3)=(2A+2B+C)x2+(A+5B)x+(−3A+3B−C) Equating the coefficients of x2 and x, we obtain B=−110,A=52, and C=−245 ∴2x−3(x+1)(x−1)(2x+3)=52(x+1)−110(x−1)−245(2x+3)⇒∫2x−3(x2−1)(2x+3)dx=52∫1(x+1)dx−110∫1x−1dx−245∫1(2x+3)dx=52log|x+1|−110log|x−1|−245×2log|2x+3|=52log|x+1|−110log|x−1|−125log|2x+3|+C
Q11. Integrate the rational function : 5x(x+1)(x2−4)
Answer. 5x(x+1)(x2−4)=5x(x+1)(x+2)(x−2)5x(x+1)(x+2)(x−2)=A(x+1)+B(x+2)+C(x−2)5x=A(x+2)(x−2)+B(x+1)(x−2)+C(x+1)(x+2)....(1) Substituting x=−1,−2, and 2 respectively in equation (1), we obtain A=53,B=−52, and C=56∴5x(x+1)(x+2)(x−2)=53(x+1)−52(x+2)+56(x−2) ⇒∫5x(x+1)(x2−4)dx=53∫1(x+1)dx−52∫1(x+2)dx+56∫1(x−2)dx=53log|x+1|−52log|x+2|+56log|x−2|+C
Q12. Integrate the rational function : x3+x+1x2−1
Answer. At can be seen that the given integrand is not a proper fraction. Therefore, on dividing (x3+x+1) by x2−1, we obtain x3+x+1x2−1=x+2x+1x2−1 2x+1x2−1=A(x+1)+B(x−1)2x+1=A(x−1)+B(x+1) Substituting x=1 and −1 in equation (1), we obtain A=12 and B=32∴x3+x+1x2−1=x+12(x+1)+32(x−1) ⇒∫x3+x+1x2−1dx=∫xdx+12∫1(x+1)dx+32∫1(x−1)dx=x22+12log|x+1|+32log|x−1|+C
Q13. Integrate the rational function : 2(1−x)(1+x2)
Answer. Let 2(1−x)(1+x2)=A(1−x)+Bx+C(1+x2)2=A(1+x2)+(Bx+C)(1−x)2=A+Ax2+Bx−Bx2+C−Cx Equating the coefficient of x2,x, and constant term, we obtain A−B=0B−C=0A+C=2 On solving these equations, we obtain A=1,B=1, and C=1∴2(1−x)(1+x2)=11−x+x+11+x2⇒∫2(1−x)(1+x2)dx=∫11−xdx+∫x1+x2dx+∫11+x2dx =−∫1x−1dx+12∫2x1+x2dx+∫11+x2dx=−log|x−1|+12log∣∣1+x2∣∣+tan−1x+C
Q14. Integrate the rational function : 3x−1(x+2)2
Answer. Let 3x−1(x+2)2=A(x+2)+B(x+2)2⇒3x−1=A(x+2)+B Equating the coefficient of x and constant term, we obtain A=32A+B=−1⇒B=−7 ∴3x−1(x+2)2=3(x+2)−7(x+2)2⇒∫3x−1(x+2)2dx=3∫1(x+2)dx−7∫x(x+2)2dx=3log|x+2|−7(−1(x+2))+C=3log|x+2|+7(x+2)+C
Q15. Integrate the rational function : 1x4−1
Answer. 1(x4−1)=1(x2−1)(x2+1)=1(x+1)(x−1)(1+x2) Let 1(x+1)(x−1)(1+x2)=A(x+1)++B(x−1)+Cx+D(x2+1)1=A(x−1)(x2+1)+B(x+1)(x2+1)+(Cx+D)(x2−1) 1=A(x3+x−x2−1)+B(x3+x+x2+1)+Cx3+Dx2−Cx−D1=(A+B+C)x3+(−A+B+D)x2+(A+B−C)x+(−A+B−D) Equating the coefficient of x3,x2,x, and constant term, we obtain A+B+C=0−A+B+D=0A+B−C=0−A+B−D=1 On solving these equations, we obtain A=−14,B=14,C=0, and D=−12 ∴1x4−1=−14(x+1)+14(x−1)−12(x2+1)⇒∫1x4−1dx=−14log|x−1|+14log|x−1|−12tan−1x+C =14log∣∣x−1x+1∣∣−12tan−1x+C
Q16. Integrate the rational function : 1x(xn+1)[ Hint: multiply numerator and denominator by xn−1 and put xn=t]
Q17. Integrate the rational function : cosx(1−sinx)(2−sinx)[ Hint : Put sinx=t]cosx(1−sinx)(2−sinx)[ Hint : Put sinx=t]
Answer. cosx(1−sinx)(2−sinx) Let sinx=t⇒cosxdx=dt∴∫cosx(1−sinx)(2−sinx)dx=∫dt(1−t)(2−t)cosx(1−sinx)(2−sinx) Let sinx=t⇒cosxdx=dt∴∫cosx(1−sinx)(2−sinx)dx=∫dt(1−t)(2−t) Let 1(1−t)(2−t)=A(1−t)+B(2−t)1=A(2−t)+B(1−t) Let 1(1−t)(2−t)=A(1−t)+B(2−t)1=A(2−t)+B(1−t) Substituting t=2 and then t=1 in equation (1), we obtain A=1 and B=−1∴1(1−t)(2−t)=1(1−t)−1(2−t) Substituting t=2 and then t=1 in equation (1), we obtain A=1 and B=−1∴1(1−t)(2−t)=1(1−t)−1(2−t) ⇒∫cosx(1−sinx)(2−sinx)dx=∫{11−t−1(2−t)}dt=−log|1−t|+log|2−t|+C⇒∫cosx(1−sinx)(2−sinx)dx=∫{11−t−1(2−t)}dt=−log|1−t|+log|2−t|+C =log∣∣2−t1−t∣∣+C=log∣∣2−sinx1−sinx∣∣+C
Q18. Integrate the rational function : (x2+1)(x2+2)(x2+3)(x2+4)(x2+1)(x2+2)(x2+3)(x2+4)
Answer. (x2+1)(x2+2)(x2+3)(x2+4)=1−(4x2+10)(x2+3)(x2+4) Let 4x2+10(x2+3)(x2+4)=Ax+B(x2+3)+Cx+D(x2+4)(x2+1)(x2+2)(x2+3)(x2+4)=1−(4x2+10)(x2+3)(x2+4) Let 4x2+10(x2+3)(x2+4)=Ax+B(x2+3)+Cx+D(x2+4) 4x2+10=(Ax+B)(x2+4)+(Cx+D)(x2+3)4x2+10=Ax3+4Ax+Bx2+4B+Cx3+3Cx+Dx2+3D4x2+10=(A+C)x3+(B+D)x2+(4A+3C)x+(4B+3D)4x2+10=(Ax+B)(x2+4)+(Cx+D)(x2+3)4x2+10=Ax3+4Ax+Bx2+4B+Cx3+3Cx+Dx2+3D4x2+10=(A+C)x3+(B+D)x2+(4A+3C)x+(4B+3D) Equating the coefficients of x3,x2,x, and constant term, we obtain A+C=0B+D=44A+3C=04B+3D=10 On solving these equations, we obtain Equating the coefficients of x3,x2,x, and constant term, we obtain A+C=0B+D=44A+3C=04B+3D=10 On solving these equations, we obtain A=0,B=−2,C=0, and D=6∴4x2+10(x2+3)(x2+4)=−2(x2+3)+6(x2+4)A=0,B=−2,C=0, and D=6∴4x2+10(x2+3)(x2+4)=−2(x2+3)+6(x2+4) (x2+1)(x2+2)(x2+3)(x2+4)=1−(−2(x2+3)+6(x2+4))⇒∫(x2+1)(x2+2)(x2+3)(x2+4)dx=∫{1+2(x2+3)−6(x2+4)}dx(x2+1)(x2+2)(x2+3)(x2+4)=1−(−2(x2+3)+6(x2+4))⇒∫(x2+1)(x2+2)(x2+3)(x2+4)dx=∫{1+2(x2+3)−6(x2+4)}dx =∫{1+2x2+(√3)2−6x2+22}=x+2(1√3tan−1x√3)−6(12tan−1x2)+C=x+2√3tan−1x√3−3tan−1x2+C
Q19. Integrate the rational function : 2x(x2+1)(x2+3)
Answer. 2x(x2+1)(x2+3) Let x2=t⇒2xdx=dt∴∫2x(x2+1)(x2+3)dx=∫dt(t+1)(t+3)…(1)2x(x2+1)(x2+3) Let x2=t⇒2xdx=dt∴∫2x(x2+1)(x2+3)dx=∫dt(t+1)(t+3)…(1) Let 1(t+1)(t+3)=A(t+1)+B(t+3)1=A(t+3)+B(t+1) substituting t=−3 and t=−1 in equation (1), we obtain A=12 and B=−12 Let 1(t+1)(t+3)=A(t+1)+B(t+3)1=A(t+3)+B(t+1) substituting t=−3 and t=−1 in equation (1), we obtain A=12 and B=−12 ∴1(t+1)(t+3)=12(t+1)−12(t+3)⇒∫2x(x2+1)(x2+3)dx=∫{12(t+1)−12(t+3)}dt∴1(t+1)(t+3)=12(t+1)−12(t+3)⇒∫2x(x2+1)(x2+3)dx=∫{12(t+1)−12(t+3)}dt =12log|(t+1)|−12log|t+3|+C=12log∣∣∣t+1t+3∣∣∣+C=12log|(t+1)|−12log|t+3|+C=12log|t+1t+3|+C =12log∣∣x2+1x2+3∣∣+C
Q20. Integrate the rational function : 1x(x4−1)1x(x4−1)
Answer. 2x(x2+1)(x2+3) Let x2=t⇒2xdx=dt∴∫2x(x2+1)(x2+3)dx=∫dt(t+1)(t+3)2x(x2+1)(x2+3) Let x2=t⇒2xdx=dt∴∫2x(x2+1)(x2+3)dx=∫dt(t+1)(t+3) Let 1(t+1)(t+3)=A(t+1)+B(t+3)1=A(t+3)+B(t+1) Substituting t=−3 and t=−1 in equation (1), we obtain Let 1(t+1)(t+3)=A(t+1)+B(t+3)1=A(t+3)+B(t+1) Substituting t=−3 and t=−1 in equation (1), we obtain A=12 and B=−12∴1(t+1)(t+3)=12(t+1)−12(t+3)A=12 and B=−12∴1(t+1)(t+3)=12(t+1)−12(t+3) ⇒∫2x(x2+1)(x2+3)dx=∫{12(t+1)−12(t+3)}dt=12log|(t+1)|−12log|t+3|+C=12log∣∣∣t+1t+3∣∣∣+C=12log∣∣∣x2+1x2+3∣∣∣+C
Q21. Integrate the rational function : 1(ex−1)[ Hint : Put ex=t]
Answer. 1x(x4−1) Multiplying numerator and denominator by x3, we obtain 1x(x4−1)=x3x4(x4−1)∴∫1x(x4−1)dx=∫x3x4(x4−1)dx1x(x4−1) Multiplying numerator and denominator by x3, we obtain 1x(x4−1)=x3x4(x4−1)∴∫1x(x4−1)dx=∫x3x4(x4−1)dx Let x4=t⇒4x3dx=dt∴∫1x(x4−1)dx=14∫dtt(t−1) Let x4=t⇒4x3dx=dt∴∫1x(x4−1)dx=14∫dtt(t−1) Let 1t(t−1)=At+B(t−1)1=A(t−1)+Bt....(1) Substituting t=0 and 1 in (1), we obtain A=−1 and B=1 Let 1t(t−1)=At+B(t−1)1=A(t−1)+Bt....(1) Substituting t=0 and 1 in (1), we obtain A=−1 and B=1 ⇒1t(t+1)=−1t+1t−1⇒∫1x(x4−1)dx=14∫{−1t+1t−1}dt⇒1t(t+1)=−1t+1t−1⇒∫1x(x4−1)dx=14∫{−1t+1t−1}dt =14[−log|t|+log|t−1|]+C=14log∣∣∣t−1t∣∣∣+C=14log∣∣∣x4−1x4∣∣∣+C
Q22. Choose the correct answer : ∫xdx(x−1)(x−2)∫xdx(x−1)(x−2) equals (A) log∣∣(x−1)2x−2∣∣+C (B) log∣∣(x−2)2x−1∣∣+C(C)log∣∣∣(x−1x−2)2∣∣∣+C (D) log|(x−1)(x−2)|+C
Answer. 1(ex−1) Let ex=t⇒exdx=dt⇒∫1ex−1dx=∫1t−1×dtt=∫1t(t−1)dt1(ex−1) Let ex=t⇒exdx=dt⇒∫1ex−1dx=∫1t−1×dtt=∫1t(t−1)dt Let 1t(t−1)=At+Bt−11=A(t−1)+Bt Substituting t=1 and t=0 in equation (1), we obtain Let 1t(t−1)=At+Bt−11=A(t−1)+Bt Substituting t=1 and t=0 in equation (1), we obtain ∴x(x−1)(x−2)=−1(x−1)+2(x−2)⇒∫x(x−1)(x−2)dx=∫{−1(x−1)+2(x−2)}dx=−log|x−1|+2log|x−2|+C=log∣∣∣(x−2)2x−1∣∣∣+C
Q23. Choose the correct answer : ∫dxx(x2+1)∫dxx(x2+1) equals (A) log|x|−12log(x2+1)+C (B) log|x|+12log(x2+1)+C(C)−log|x|+12log(x2+1)+C (D) 12log|x|+log(x2+1)+C
Answer. Let 1x(x2+1)=Ax+Bx+Cx2+11=A(x2+1)+(Bx+C)x Equating the coefficients of x2,x, and constant term, we obtain Let 1x(x2+1)=Ax+Bx+Cx2+11=A(x2+1)+(Bx+C)x Equating the coefficients of x2,x, and constant term, we obtain A + B = 0 C = 0 A = 1 On solving these equations, we obtain A = 1, B = −1, and C = 0 ∴1x(x2+1)=1x+−xx2+1⇒∫1x(x2+1)dx=∫{1x−xx2+1}dx∴1x(x2+1)=1x+−xx2+1⇒∫1x(x2+1)dx=∫{1x−xx2+1}dx =log|x|−12log∣∣x2+1∣∣+C Hence, the correct Answer is A
Chapter-7 (integrals)