NCERT Solutions Class 12 Maths Chapter-7 (Integrals)Exercise 7.5

NCERT Solutions Class 12 Maths Chapter-7 (Integrals)Exercise 7.5

NCERT Solutions Class 12 Maths from class 12th Students will get the answers of Chapter-7 (Integrals)Exercise 7.5 This chapter will help you to learn the basics and you should expect at least one question in your exam from this chapter.
We have given the answers of all the questions of NCERT Board Mathematics Textbook in very easy language, which will be very easy for the students to understand and remember so that you can pass with good marks in your examination.
NCERT Solutions Class 12 maths Chapter-7 (Integrals)Exercise 7.5

Exercise 7.5

Q1. Integrate the rational function : 

Answer. x Let x(x+1)(x+2)=A(x+1)+B(x+2)x=A(x+2)+B(x+1) Equating the coefficients of x and constant term, we obtain  A+B=12A+B=0 On solving, we obtain A=1 and B=2 x(x+1)(x+2)=1(x+1)+2(x+2)x(x+1)(x+2)dx=1(x+1)+2(x+2)dx 

Q2. Integrate the rational function : 

Answer. 1(x+3)(x3)=A(x+3)+B(x3)1=A(x3)+B(x+3)  Equating the coefficients of x and constant term, we obtain A+B=03A+3B=1  On solving, we obtain A=16 and B=161(x+3)(x3)=16(x+3)+16(x3) 

Q3. Integrate the rational function : 

Answer. 3x1(x1)(x2)(x3)=A(x1)+B(x2)+C(x3)3x1=A(x2)(x3)+B(x1)(x3)+C(x1)(x2) Substituting x=1,2, and 3 respectively in equation (1), we obtain  A=1,B=5, and C=43x1(x1)(x2)(x3)=1(x1)5(x2)+4(x3) 

Q4. Integrate the rational function : 

Answer. xLetx(x1)(x2)(x3)=A(x1)+B(x2)+C(x3)x=A(x2)(x3)+B(x1)(x3)+C(x1)(x2)...(1) Substituting x=1,2, and 3 respectively in equation (1), we obtain  A=12,B=2, and C=32x(x1)(x2)(x3)=12(x1)2(x2)+32(x3) 

Q5. Integrate the rational function : 

Answer. 2xx2+3x+2=A(x+1)+B(x+2)2x=A(x+2)+B(x+1) Substituting x=1 and 2 in equation (1), we obtain A=2 and B=4 

Q6. Integrate the rational function : 

Answer.  It can be seen that the given integrand is not a proper fraction.  Therefore, on dividing (1x2) by x(12x), we obtain 1x2x(12x)=12+12(2xx(12x)) 2xx(12x)=Ax+B(12x)(2x)=A(12x)+Bx Substituting x=0 and 12 in equation (1), we obtain  A=2 and B=32xx(12x)=2x+312x Substituting in equation (1), we obtain  1x2x(12x)=12+12{2x+3(12x)}1x2x(12x)dx={12+12(2x+312x)}dx 

Q7. Integrate the rational function : 

Answer. x(x2+1)(x1)=Ax+B(x2+1)+C(x1)x=(Ax+B)(x1)+C(x2+1)x=Ax2Ax+BxB+Cx2+C  Equating the coefficients of x2,x, and constant term, we obtain A+C=0A+B=1B+C=0  On solving these equations, we obtain A=12,B=12, and C=12 From equation (1), we obtain  x(x2+1)(x1)=(12x+12)x2+1+12(x1)x(x2+1)(x1)=12xx2+1dx+121x2+1dx+121x1dx =142xx2+1dx+12tan1x+12log|x1|+C Consider 2xx2+1dx, let (x2+1)=t2xdx=dt2xx2+1dx=dtt=log|t|=log|x2+1| 

Q8. Integrate the rational function : 

Answer. x(x1)2(x+2)=A(x1)+B(x1)2+C(x+2)x=A(x1)(x+2)+B(x+2)+C(x1)2 Substituting x=1, we obtain   Substituting x=1, we obtain B=13 Equating the coefficients of x2 and constant term, we obtain A+C=02A+2B+C=0On solving, we obtain A=29 and C=29x(x1)2(x+2)=29(x1)+13(x1)229(x+2) x(x1)2(x+2)dx=291(x1)dx+131(x1)2dx291(x+2)dx 

Q9. Integrate the rational function : 3x+5x3x2x+1

Answer. 3x+5x3x2x+1=3x+5(x1)2(x+1)Let3x+5(x1)2(x+1)=A(x1)+B(x1)2+C(x+1) 3x+5=A(x1)(x+1)+B(x+1)+C(x1)23x+5=A(x21)+B(x+1)+C(x2+12x)  Substituting x=1 in equation (1), we obtain B=4 Equating the coefficients of x2 and x, we obtain A+C=0B2C=3 On solving, we obtain A=12 and C=12 3x+5(x1)2(x+1)=12(x1)+4(x1)2+12(x+1)3x+5(x1)2(x+1)dx=121x1dx+41(x1)2dx+121(x+1)dx 

Q10. Integrate the rational function : 2x3(x21)(2x+3)


Answer. 2x3(x21)(2x+3)=2x3(x+1)(x1)(2x+3)Let2x3(x+1)(x1)(2x+3)=A(x+1)+B(x1)+C(2x+3) (2x3)=A(x1)(2x+3)+B(x+1)(2x+3)+C(x+1)(x1)(2x3)=A(2x2+x3)+B(2x2+5x+3)+C(x21)(2x3)=(2A+2B+C)x2+(A+5B)x+(3A+3BC) Equating the coefficients of x2 and x, we obtain B=110,A=52, and C=245 

Q11. Integrate the rational function : 

Answer. 5x(x+1)(x24)=5x(x+1)(x+2)(x2)5x(x+1)(x+2)(x2)=A(x+1)+B(x+2)+C(x2)5x=A(x+2)(x2)+B(x+1)(x2)+C(x+1)(x+2)....(1)  Substituting x=1,2, and 2 respectively in equation (1), we obtain A=53,B=52, and C=565x(x+1)(x+2)(x2)=53(x+1)52(x+2)+56(x2) 

Q12. Integrate the rational function : 

Answer.  At can be seen that the given integrand is not a proper fraction.  Therefore, on dividing (x3+x+1) by x21, we obtain x3+x+1x21=x+2x+1x21 2x+1x21=A(x+1)+B(x1)2x+1=A(x1)+B(x+1)  Substituting x=1 and 1 in equation (1), we obtain A=12 and B=32x3+x+1x21=x+12(x+1)+32(x1) 

Q13. Integrate the rational function : 

Answer.  Let 2(1x)(1+x2)=A(1x)+Bx+C(1+x2)2=A(1+x2)+(Bx+C)(1x)2=A+Ax2+BxBx2+CCx  Equating the coefficient of x2,x, and constant term, we obtain AB=0BC=0A+C=2  On solving these equations, we obtain A=1,B=1, and C=12(1x)(1+x2)=11x+x+11+x22(1x)(1+x2)dx=11xdx+x1+x2dx+11+x2dx 

Q14. Integrate the rational function : 

Answer.  Let 3x1(x+2)2=A(x+2)+B(x+2)23x1=A(x+2)+B Equating the coefficient of x and constant term, we obtain A=32A+B=1B=7 

Q15. Integrate the rational function : 

Answer. 1(x41)=1(x21)(x2+1)=1(x+1)(x1)(1+x2) Let 1(x+1)(x1)(1+x2)=A(x+1)++B(x1)+Cx+D(x2+1)1=A(x1)(x2+1)+B(x+1)(x2+1)+(Cx+D)(x21) 1=A(x3+xx21)+B(x3+x+x2+1)+Cx3+Dx2CxD1=(A+B+C)x3+(A+B+D)x2+(A+BC)x+(A+BD) Equating the coefficient of x3,x2,x, and constant term, we obtain  A+B+C=0A+B+D=0A+BC=0A+BD=1 On solving these equations, we obtain A=14,B=14,C=0, and D=12 1x41=14(x+1)+14(x1)12(x2+1)1x41dx=14log|x1|+14log|x1|12tan1x+C 

Q16. Integrate the rational function : 1x(xn+1)[ Hint: multiply numerator and denominator by xn1 and put xn=t]

Answer. 1x(xn+1) Multiplying numerator and denominator by xn1, we obtain 1x(xn+1)=xn1xn1x(xn+1)=xn1xn(xn+1)  Let xn=txn1dx=dt1x(xn+1)dx=xn1xn(xn+1)dx=1n1t(t+1)dt Let 1t(t+1)=At+B(t+1) 1=A(1+t)+Bt Substituting t=0,1 in equation (1), we obtain A=1 and B=11t(t+1)=1t1(1+t) 1x(xn+1)dx=1n{1t1(t+1)}dx=1n[log|t|log|t+1|]+C 

Q17. Integrate the rational function : cosx(1sinx)(2sinx)[ Hint : Put sinx=t]

Answer. cosx(1sinx)(2sinx) Let sinx=tcosxdx=dtcosx(1sinx)(2sinx)dx=dt(1t)(2t)  Let 1(1t)(2t)=A(1t)+B(2t)1=A(2t)+B(1t)  Substituting t=2 and then t=1 in equation (1), we obtain A=1 and B=11(1t)(2t)=1(1t)1(2t) cosx(1sinx)(2sinx)dx={11t1(2t)}dt=log|1t|+log|2t|+C 

Q18. Integrate the rational function : (x2+1)(x2+2)(x2+3)(x2+4)

Answer. (x2+1)(x2+2)(x2+3)(x2+4)=1(4x2+10)(x2+3)(x2+4) Let 4x2+10(x2+3)(x2+4)=Ax+B(x2+3)+Cx+D(x2+4) 4x2+10=(Ax+B)(x2+4)+(Cx+D)(x2+3)4x2+10=Ax3+4Ax+Bx2+4B+Cx3+3Cx+Dx2+3D4x2+10=(A+C)x3+(B+D)x2+(4A+3C)x+(4B+3D)  Equating the coefficients of x3,x2,x, and constant term, we obtain A+C=0B+D=44A+3C=04B+3D=10 On solving these equations, we obtain  A=0,B=2,C=0, and D=64x2+10(x2+3)(x2+4)=2(x2+3)+6(x2+4) (x2+1)(x2+2)(x2+3)(x2+4)=1(2(x2+3)+6(x2+4))(x2+1)(x2+2)(x2+3)(x2+4)dx={1+2(x2+3)6(x2+4)}dx 

Q19. Integrate the rational function : 

Answer. 2x(x2+1)(x2+3) Let x2=t2xdx=dt2x(x2+1)(x2+3)dx=dt(t+1)(t+3)(1)  Let 1(t+1)(t+3)=A(t+1)+B(t+3)1=A(t+3)+B(t+1) substituting t=3 and t=1 in equation (1), we obtain A=12 and B=12 1(t+1)(t+3)=12(t+1)12(t+3)2x(x2+1)(x2+3)dx={12(t+1)12(t+3)}dt =12log|(t+1)|12log|t+3|+C=12log|t+1t+3|+C 

Q20. Integrate the rational function : 1x(x41)

Answer. 2x(x2+1)(x2+3) Let x2=t2xdx=dt2x(x2+1)(x2+3)dx=dt(t+1)(t+3)  Let 1(t+1)(t+3)=A(t+1)+B(t+3)1=A(t+3)+B(t+1) Substituting t=3 and t=1 in equation (1), we obtain  A=12 and B=121(t+1)(t+3)=12(t+1)12(t+3) 

Q21. Integrate the rational function : 

Answer. 1x(x41) Multiplying numerator and denominator by x3, we obtain 1x(x41)=x3x4(x41)1x(x41)dx=x3x4(x41)dx  Let x4=t4x3dx=dt1x(x41)dx=14dtt(t1)  Let 1t(t1)=At+B(t1)1=A(t1)+Bt....(1) Substituting t=0 and 1 in (1), we obtain A=1 and B=1 1t(t+1)=1t+1t11x(x41)dx=14{1t+1t1}dt 

Q22. Choose the correct answer : xdx(x1)(x2) equals 

Answer. 1(ex1) Let ex=texdx=dt1ex1dx=1t1×dtt=1t(t1)dt  Let 1t(t1)=At+Bt11=A(t1)+Bt Substituting t=1 and t=0 in equation (1), we obtain  

Q23. Choose the correct answer : dxx(x2+1) equals 

Answer.  Let 1x(x2+1)=Ax+Bx+Cx2+11=A(x2+1)+(Bx+C)x Equating the coefficients of x2,x, and constant term, we obtain  A + B = 0 C = 0 A = 1 On solving these equations, we obtain A = 1, B = −1, and C = 0 1x(x2+1)=1x+xx2+11x(x2+1)dx={1xxx2+1}dx 

Chapter-7 (integrals)