NCERT Solutions Class 12 maths Chapter-7 (Integrals)Exercise 7.4
NCERT Solutions Class 12 Maths from class 12th Students will get the answers of Chapter-7 (Integrals)Exercise 7.4 This chapter will help you to learn the basics and you should expect at least one question in your exam from this chapter.
We have given the answers of all the questions of
NCERT Board Mathematics Textbook in very easy language, which will be very easy for the students to understand and remember so that you can pass with good marks in your examination.
Exercise 7.4
Q1. Integrate the function : 3x2x6+1
Answer. Let x3=t∴3x2dx=dt⇒3x2+1⇒∫3x2x6+1dx=∫dtt2+1=tan−1(t)+C=tan−1(x3)+C
Q2. Integrate the function : 1√1+4x2
Answer. Let 2x = t ∴ 2dx = dt ⇒∫1√1+4x2dx=12∫dt√1+t2=12[log∣∣t+√t2+1∣∣]+C[∫1√x2+a2dt=log∣∣x+√x2+a2∣∣] =12log∣∣2x+√4x2+1∣∣+C
Q3. Integrate the function : 1√(2−x)2+1
Q4. Integrate the function : 1√9−25x219−25x2
Answer.Let 5x = t ∴ 5dx = dt ⇒∫1√9−25x2dx=15∫19−t2dt=15∫1√32−t2dt=15sin−1(t3)+C=15sin−1(5x3)+C
Q5. Integrate the function : 3x1+2x43x1+2x4
Answer. Let √2x2=t∴2√2xdx=dt⇒∫3x1+2x4dx=32√2∫dt1+t2 Let 2x2=t∴22xdx=dt⇒∫3x1+2x4dx=322∫dt1+t2 =32√2[tan−1t]+C=32√2tan−1(√2x2)+C
Q6. Integrate the function : x21−x6x21−x6
Answer. Let x3=tx3=t ∴3x2dx=dt⇒∫x21−x6dx=13∫dt1−t2=13[12log∣∣∣1+t1−t∣∣∣]+C∴3x2dx=dt⇒∫x21−x6dx=13∫dt1−t2=13[12log|1+t1−t|]+C =16log∣∣1+x31−x3∣∣+C
Q7. Integrate the function : x−1√x2−1
Answer. ∫x−1√x2−1dx=∫x√x2−1dx−∫1√x2−1dx....(1)∫x−1x2−1dx=∫xx2−1dx−∫1x2−1dx....(1) For ∫x√x2−1dx, let x2−1=t⇒2xdx=dt∴∫x√x2−1dx=12∫dt√t For ∫xx2−1dx, let x2−1=t⇒2xdx=dt∴∫xx2−1dx=12∫dtt =12∫t−12dt=12[2t12]=√t=√x2−1 From ( 1), we obtain =12∫t−12dt=12[2t12]=t=x2−1 From ( 1), we obtain ∫x−1√x2−1dx=∫x√x2−1dx−∫1√x2−1dx[∫1√x2−a2dt=log∣∣x+√x2−a2∣∣]∫x−1x2−1dx=∫xx2−1dx−∫1x2−1dx[∫1x2−a2dt=log|x+x2−a2|] =√x2−1−log∣∣x+√x2−1∣∣+C
Q8. Integrate the function : x2√x6+a6x2x6+a6
Answer. Let x3=t⇒3x2dx=dt∴∫x2√x6+a6dx=13∫dt√t2+(a3)2 Let x3=t⇒3x2dx=dt∴∫x2x6+a6dx=13∫dtt2+(a3)2 =13log∣∣t+√t2+a6∣∣+C=13log∣∣x3+√x6+a6∣∣+C
Q9. Integrate the function : sec2x√tan2x+4sec2xtan2x+4
Answer. Let tan x=t∴sec2xdx=dt Let tan x=t∴sec2xdx=dt ⇒∫sec2x√tan2x+4dx=∫dt√t2+22=log∣∣t+√t2+4∣∣+C=log∣∣tanx+√tan2x+4∣∣+C
Q10. Integrate the function : 1√x2+2x+21x2+2x+2
Answer. ∫1√x2+2x+2dx=∫1√(x+1)2+(1)2dx Let x+1=t∴dx=dt⇒∫1√x2+2x+2dx=∫1√t2+1dt∫1x2+2x+2dx=∫1(x+1)2+(1)2dx Let x+1=t∴dx=dt⇒∫1x2+2x+2dx=∫1t2+1dt =log∣∣t+√t2+1∣∣+C=log∣∣(x+1)+√(x+1)2+1∣∣+C=log∣∣(x+1)+√x2+2x+2∣∣+C
Q11. Integrate the function : 1√9x2+6x+519x2+6x+5
Answer. ∫19x2+6x+5dx=∫1(3x+1)2+(2)2dx Let (3x+1)=t∴3dx=dt⇒∫1(3x+1)2+(2)2dx=13∫1t2+22dt∫19x2+6x+5dx=∫1(3x+1)2+(2)2dx Let (3x+1)=t∴3dx=dt⇒∫1(3x+1)2+(2)2dx=13∫1t2+22dt =13[12tan−1(t2)]+C=16tan−1(3x+12)+C
Q12. Integrate the function : 1√7−6x−x217−6x−x2
Answer. 7−6x−x2 can be written as 7−(x2+6x+9−9) Therefore, 7−(x2+6x+9−9)=16−(x2+6x+9)=16−(x+3)27−6x−x2 can be written as 7−(x2+6x+9−9) Therefore, 7−(x2+6x+9−9)=16−(x2+6x+9)=16−(x+3)2 =(4)2−(x+3)2∴∫1√7−6x−x2dx=∫1√(4)2−(x+3)2dx Let x+3=t⇒dx=dt⇒∫1√(4)2−(x+3)2dx=∫1√(4)2−(t)2dt=(4)2−(x+3)2∴∫17−6x−x2dx=∫1(4)2−(x+3)2dx Let x+3=t⇒dx=dt⇒∫1(4)2−(x+3)2dx=∫1(4)2−(t)2dt =sin−1(t4)+C=sin−1(x+34)+C
Q13. Integrate the function : 1√(x−1)(x−2)
Answer. (x−1)(x−2) can be written as x2−3x+2 Therefore, x2−3x+2=x2−3x+94−94+2=(x−32)2−14=(x−32)2−(12)2(x−1)(x−2) can be written as x2−3x+2 Therefore, x2−3x+2=x2−3x+94−94+2=(x−32)2−14=(x−32)2−(12)2 ∴∫1√(x−1)(x−2)dx=∫1√(x−32)2−(12)2dx Let x−32=t∴dx=dt⇒∫1√(x−32)2−(12)2dx=∫1√t2−(12)2dt∴∫1(x−1)(x−2)dx=∫1(x−32)2−(12)2dx Let x−32=t∴dx=dt⇒∫1(x−32)2−(12)2dx=∫1t2−(12)2dt =log∣∣∣t+√t2−(12)2∣∣∣+C=log(x−32)+√x2−3x+2|+C
Q14. Integrate the function : 1√8+3x−x218+3x−x2
Answer. 8+3x−x2 can be written as 8−(x2−3x+94−94) Therefore, 8−(x2−3x+94−94)=414−(x−32)28+3x−x2 can be written as 8−(x2−3x+94−94) Therefore, 8−(x2−3x+94−94)=414−(x−32)2 ⇒∫1√8+3x−x2dx=∫1√414−(x−32)2dx Let x−32=t∴dx=dt⇒∫1√414−(x−32)2dx=∫1√(√412)2−t2dt⇒∫18+3x−x2dx=∫1414−(x−32)2dx Let x−32=t∴dx=dt⇒∫1414−(x−32)2dx=∫1(412)2−t2dt =sin−1(t√41)+C=sin−1(x−32√412)+C=sin−1(2x−3√41)+C
Q15. Integrate the function : 1√(x−a)(x−b)1(x−a)(x−b)
Answer. (x−a)(x−b) can be written as x2−(a+b)x+ab Therefore, x2−(a+b)x+ab=x2−(a+b)x+(a+b)24−(a+b)24+ab=[x−(a+b2)]2−(a−b)24(x−a)(x−b) can be written as x2−(a+b)x+ab Therefore, x2−(a+b)x+ab=x2−(a+b)x+(a+b)24−(a+b)24+ab=[x−(a+b2)]2−(a−b)24 ⇒∫1√(x−a)(x−b)dx=∫1√{x−(a+b2)}2−(a−b2)2dxLetx−(a+b2)=t∴dx=dt⇒∫1√{x−(a+b2)}2−(a−b2)2dx=∫1√t2−(a−b2)2dt⇒∫1(x−a)(x−b)dx=∫1{x−(a+b2)}2−(a−b2)2dxLetx−(a+b2)=t∴dx=dt⇒∫1{x−(a+b2)}2−(a−b2)2dx=∫1t2−(a−b2)2dt =log∣∣∣t+√t2−(a−b2)2∣∣∣+C=log|{x−(a+b2)}+√(x−a)(x−b)+C
Q16. Integrate the function : 4x+1√2x2+x−34x+12x2+x−3
Answer. Let 4x+1=Addx(2x2+x−3)+B⇒4x+1=A(4x+1)+B⇒4x+1=4Ax+A+B Let 4x+1=Addx(2x2+x−3)+B⇒4x+1=A(4x+1)+B⇒4x+1=4Ax+A+B Equating the coefficients of x and constant term on both sides, we obtain 4A = 4 ⇒ A = 1 A + B = 1 ⇒ B = 0 Let 2x2+x−3=t∴(4x+1)dx=dt Let 2x2+x−3=t∴(4x+1)dx=dt ⇒∫4x+1√2x2+x−3dx=∫1√tdt=2√t+C=2√2x2+x−3+C
Q17. Integrate the function : x+2√x2−1x+2x2−1
Answer.
Let x+2=Addx(x2−1)+B…(1)⇒x+2=A(2x)+B Let x+2=Addx(x2−1)+B…(1)⇒x+2=A(2x)+B Equating the coefficients of x and constant term on both sides, we obtain 2A=1⇒A=12B=2 From (1), we obtain 2A=1⇒A=12B=2 From (1), we obtain (x+2)=12(2x)+2 Then, ∫x+2√x2−1dx=∫12(2x)+2√x2−1dx=12∫2x√x2−1dx+∫2√x2−1dx...(2)(x+2)=12(2x)+2 Then, ∫x+2x2−1dx=∫12(2x)+2x2−1dx=12∫2xx2−1dx+∫2x2−1dx...(2) In12∫2x√x2−1dx, let x2−1=t⇒2xdx=dt12∫2x√x2−1dx=12∫dt√t=12[2√t]=√t=√x2−1In12∫2xx2−1dx, let x2−1=t⇒2xdx=dt12∫2xx2−1dx=12∫dtt=12[2t]=t=x2−1 Then, ∫2√x2−1dx=2∫1√x2−1dx=2log∣∣x+√x2−1∣∣ From equation (2), we obtain ∫x+2√x2−1dx=√x2−1+2log∣∣x+√x2−1∣∣+C
Q18. Integrate the function : 5x−21+2x+3x25x−21+2x+3x2
Answer.
Let 5x−2=Addx(1+2x+3x2)+B⇒5x−2=A(2+6x)+B Let 5x−2=Addx(1+2x+3x2)+B⇒5x−2=A(2+6x)+B Equating the coefficient of x and constant term on both sides, we obtain 5=6A⇒A=562A+B=−2⇒B=−113∴5x−2=56(2+6x)+(−113)⇒∫5x−21+2x+3x2dx=∫56(2+6x−113)1+2x+3x2dx5=6A⇒A=562A+B=−2⇒B=−113∴5x−2=56(2+6x)+(−113)⇒∫5x−21+2x+3x2dx=∫56(2+6x−113)1+2x+3x2dx =56∫2+6x1+2x+3x2dx−113∫11+2x+3x2dx Let I1=∫2+6x1+2x+3x2dx and I2=∫11+2x+3x2dx∴∫5x−21+2x+3x2dx=56I1−113I2......(1)=56∫2+6x1+2x+3x2dx−113∫11+2x+3x2dx Let I1=∫2+6x1+2x+3x2dx and I2=∫11+2x+3x2dx∴∫5x−21+2x+3x2dx=56I1−113I2......(1) I1=∫2+6x1+2x+3x2dx Let 1+2x+3x2⇒(2+6x)dx=dt∴I1=∫dttI1=log|t|I1=log∣∣1+2x+3x2∣∣I1=∫2+6x1+2x+3x2dx Let 1+2x+3x2⇒(2+6x)dx=dt∴I1=∫dttI1=log|t|I1=log|1+2x+3x2| I2=∫11+2x+3x2dxI2=∫11+2x+3x2dx 1+2x+3x2 can be written as 1+3(x2+23x) Therefore, 1+3(x2+23x)=1+3(x2+23x+19−19)1+2x+3x2 can be written as 1+3(x2+23x) Therefore, 1+3(x2+23x)=1+3(x2+23x+19−19) =1+3(x+13)2−13=23+3(x+13)2=3[(x+13)2+29]=3[(x+13)2+(√23)2]=1+3(x+13)2−13=23+3(x+13)2=3[(x+13)2+29]=3[(x+13)2+(23)2] I2=13∫1[(x+13)2+(√23)2]dx=13⎡⎢⎣1√23tan−1⎛⎜⎝x+13√23⎞⎟⎠⎤⎥⎦I2=13∫1[(x+13)2+(23)2]dx=13[123tan−1(x+1323)] =13[3√2tan−1(3x+1√2)]=1√2tan−1(3x+1√2..(3))=13[32tan−1(3x+12)]=12tan−1(3x+12..(3)) Substituting equations (2) and (3) in equation (1), we obtain ∫5x−21+2x+3x2dx=56[log|1+2x+3x2|]−113[1√2tan−1(3x+1√2)]+C=56log∣∣1+2x+3x2∣∣−113√2tan−1(3x+1√2)+C
Q19. Integrate the function : 6x+7√(x−5)(x−4)6x+7(x−5)(x−4)
Answer. 6x+7√(x−5)(x−4)=6x+7√x2−9x+20 Let 6x+7=Addx(x2−9x+20)+B⇒6x+7=A(2x−9)+B6x+7(x−5)(x−4)=6x+7x2−9x+20 Let 6x+7=Addx(x2−9x+20)+B⇒6x+7=A(2x−9)+B Equating the coefficients of x and constant term, we obtain 2A = 6 ⇒ A = 3 −9A + B = 7 ⇒ B = 34 ∴ 6x + 7 = 3 (2x − 9) + 34 ∫6x+7√x2−9x+20=∫3(2x−9)+34√x2−9x+20dx=3∫2x−9√x2−9x+20dx+34∫1√x2−9x+20dx∫6x+7x2−9x+20=∫3(2x−9)+34x2−9x+20dx=3∫2x−9x2−9x+20dx+34∫1x2−9x+20dx Let I1=∫2x−9√x2−9x+20dx and I2=∫1√x2−9x+20dx∴∫6x+7√x2−9x+20=3I1+34I2....(1) Let I1=∫2x−9x2−9x+20dx and I2=∫1x2−9x+20dx∴∫6x+7x2−9x+20=3I1+34I2....(1) Then, I1=∫2x−9√x2−9x+20dx Let x2−9x+20=t⇒(2x−9)dx=dt⇒I1=dt√t Then, I1=∫2x−9x2−9x+20dx Let x2−9x+20=t⇒(2x−9)dx=dt⇒I1=dtt I1=2√tI1=2√x2−9x+20 and I2=∫1√x2−9x+20dxI1=2tI1=2x2−9x+20 and I2=∫1x2−9x+20dx x2−9x+20 can be written as x2−9x+20+814−814 Therefore, x2−9x+20+814−814=(x−92)2−14x2−9x+20 can be written as x2−9x+20+814−814 Therefore, x2−9x+20+814−814=(x−92)2−14 =(x−92)2−(12)2⇒I2=∫√(x−92)2−(12)2dx=(x−92)2−(12)2⇒I2=∫(x−92)2−(12)2dx I2=log(x−92)+√x2−9x+20|........(3) Substituting equations (2) and (3) in (1), we obtain ∫6x+7√x2−9x+20dx=3[2√x2−9x+20]+34log[(x−92)+√x2−9x+20]+CI2=log(x−92)+x2−9x+20|........(3) Substituting equations (2) and (3) in (1), we obtain ∫6x+7x2−9x+20dx=3[2x2−9x+20]+34log[(x−92)+x2−9x+20]+C =6√x2−9x+20+34log[(x−92)+√x2−9x+20]+C
Q20. Integrate the function : x+2√4x−x2x+24x−x2
Answer. Let x+2=Addx(4x−x2)+B⇒x+2=A(4−2x)+B Let x+2=Addx(4x−x2)+B⇒x+2=A(4−2x)+B Equating the coefficients of x and constant term on both sides, we obtain −2A=1⇒A=−124A+B=2⇒B=4⇒(x+2)=−12(4−2x)+4∴∫x+2√4x−x2dx=∫−12(4−2x)+4√4x−x2dx−2A=1⇒A=−124A+B=2⇒B=4⇒(x+2)=−12(4−2x)+4∴∫x+24x−x2dx=∫−12(4−2x)+44x−x2dx =−12∫4−2x√4x−x2dx+4∫1√4x−x2dx Let I1=∫4−2x√4x−x2dx and I2∫1√4x−x2dx∴∫x+2√4x−x2dx=−12I1+4I2=−12∫4−2x4x−x2dx+4∫14x−x2dx Let I1=∫4−2x4x−x2dx and I2∫14x−x2dx∴∫x+24x−x2dx=−12I1+4I2 Then, I1=∫4−2x√4x−x2dx Let 4x−x2=t⇒(4−2x)dx=dt⇒I1=∫dt√t=2√t=2√4x−x2 Then, I1=∫4−2x4x−x2dx Let 4x−x2=t⇒(4−2x)dx=dt⇒I1=∫tdt=2t=24x−x2 I2=∫1√4x−x2dx⇒4x−x2=−(−4x+x2)=(−4x+x2+4−4)=4−(x−2)2∴I2=∫1√(2)2−(x−2)2dx=sin−1(x−22)I2=∫14x−x2dx⇒4x−x2=−(−4x+x2)=(−4x+x2+4−4)=4−(x−2)2∴I2=∫1(2)2−(x−2)2dx=sin−1(x−22) Using equations (2) and (3) in (1), we obtain ∫x+2√4x−x2dx=−12(2√4x−x2)+4sin−1(x−22)+C=−√4x−x2+4sin−1(x−22)+C
Q21. Integrate the function : x+2√x2+2x+3x+2x2+2x+3
Answer. ∫(x+2)√x2+2x+3dx=12∫2(x+2)√x2+2x+3dx=12∫2x+4√x2+2x+3dx=12∫2x+2√x2+2x+3dx+12∫2√x2+2x+3dx∫(x+2)x2+2x+3dx=12∫2(x+2)x2+2x+3dx=12∫2x+4x2+2x+3dx=12∫2x+2x2+2x+3dx+12∫2x2+2x+3dx =12∫2x+2√x2+2x+3dx+∫1√x2+2x+3dx Let I1=∫2x+2√x2+2x+3dx and I2=∫1√x2+2x+3dx∴∫x+2√x2+2x+3dx=12I1+I2.....(1)=12∫2x+2x2+2x+3dx+∫1x2+2x+3dx Let I1=∫2x+2x2+2x+3dx and I2=∫1x2+2x+3dx∴∫x+2x2+2x+3dx=12I1+I2.....(1) Then, I1=∫2x+2√x2+2x+3dx Let x2+2x+3=t⇒(2x+2)dx=dt Then, I1=∫2x+2x2+2x+3dx Let x2+2x+3=t⇒(2x+2)dx=dt I1=∫dt√t=2√t=2√x2+2x+3...(2)I2=∫1√x2+2x+3dxI1=∫dtt=2t=2x2+2x+3...(2)I2=∫1x2+2x+3dx ⇒x2+2x+3=x2+2x+1+2=(x+1)2+(√2)2∴I2=∫1√(x+1)2+(√2)2dx=log(x+1)+√x2+2x+3|...(3)⇒x2+2x+3=x2+2x+1+2=(x+1)2+(2)2∴I2=∫1(x+1)2+(2)2dx=log(x+1)+x2+2x+3|...(3) Using equations (2) and (3) in (1), we obtain ∫x+2√x2+2x+3dx=12[2√x2+2x+3]+log(x+1)+√x2+2x+3|+C=√x2+2x+3+log(x+1)+√x2+2x+3|+C
Q22. Integrate the function : x+3x2−2x−5
Answer. Let (x+3)=Addx(x2−2x−5)+B(x+3)=A(2x−2)+B Equating the coefficients of x and constant term on both sides, we obtain Let (x+3)=Addx(x2−2x−5)+B(x+3)=A(2x−2)+B Equating the coefficients of x and constant term on both sides, we obtain 2A=1⇒A=12−2A+B=3⇒B=4∴(x+3)=12(2x−2)+42A=1⇒A=12−2A+B=3⇒B=4∴(x+3)=12(2x−2)+4 ⇒∫x+3x2−2x−5dx=∫12(2x−2)+4x2−2x−5dx=12∫2x−2x2−2x−5dx+4∫1x2−2x−5dx⇒∫x+3x2−2x−5dx=∫12(2x−2)+4x2−2x−5dx=12∫2x−2x2−2x−5dx+4∫1x2−2x−5dx Let I1=∫2x−2x2−2x−5dx and I2=∫1x2−2x−5dx∴∫x+3(x2−2x−5)dx=12I1+4I2 Then ,I1=∫2x−2x2−2x−5dx Let I1=∫2x−2x2−2x−5dx and I2=∫1x2−2x−5dx∴∫x+3(x2−2x−5)dx=12I1+4I2 Then ,I1=∫2x−2x2−2x−5dx Let x2−2x−5=t⇒(2x−2)dx=dt⇒I1=∫dtt=log|t|=log∣∣x2−2x−5∣∣ Let x2−2x−5=t⇒(2x−2)dx=dt⇒I1=∫dtt=log|t|=log|x2−2x−5| I2=∫x2−2x−5dx=∫1(x2−2x+1)−6dx=∫
(x−1)2+(√6)2dx=12√6log(x−1−√6x−1+√6)I2=∫x2−2x−5dx=∫1(x2−2x+1)−6dx=∫1(x−1)2+(6)2dx=126log(x−1−6x−1+6) Substituting (2) and (3) in (1), we obtain ∫x+3x2−2x−5dx=12log∣∣x2−2x−5∣∣+42√6log∣∣x−1−√6x−1+√6∣∣+C Substituting (2) and (3) in (1), we obtain ∫x+3x2−2x−5dx=12log|x2−2x−5|+426log|x−1−6x−1+6|+C =12log∣∣x2−2x−5∣∣+2√6log∣∣x−1−√6x−1+√6∣∣+C
Q23. Integrate the function : 5x+3√x2+4x+105x+3x2+4x+10
Answer. Let 5x+3=Addx(x2+4x+10)+B⇒5x+3=A(2x+4)+B Equating the coefficients of x and constant term, we obtain 2A=5⇒A=52 Let 5x+3=Addx(x2+4x+10)+B⇒5x+3=A(2x+4)+B Equating the coefficients of x and constant term, we obtain 2A=5⇒A=52 4A+B=3⇒B=−7∴5x+3=52(2x+4)−7⇒∫5x+3√x2+4x+10dx=∫52(2x+4)−7√x2+4x+10dx4A+B=3⇒B=−7∴5x+3=52(2x+4)−7⇒∫5x+3x2+4x+10dx=∫52(2x+4)−7x2+4x+10dx =52∫2x+4√x2+4x+10dx−7∫1√x2+4x+10dx Let I1=∫2x+4√x2+4x+10dx and I2=∫1√x2+4x+10dx=52∫2x+4x2+4x+10dx−7∫1x2+4x+10dx Let I1=∫2x+4x2+4x+10dx and I2=∫1x2+4x+10dx ∴∫5x+3√x2+4x+10dx=52I1−7I2 Then I1=∫2x+4√x2+4x+10dx Let x2+4x+10=t∴(2x+4)dx=dt∴∫5x+3x2+4x+10dx=52I1−7I2 Then I1=∫2x+4x2+4x+10dx Let x2+4x+10=t∴(2x+4)dx=dt ⇒I1=∫dtt=2√t=2√x2+4x+10I2=∫1√x2+4x+10dx=∫1√(x2+4x+4)+6dx⇒I1=∫dtt=2t=2x2+4x+10I2=∫1x2+4x+10dx=∫1(x2+4x+4)+6dx =∫1(x+2)2+(√6)2dx=log∣∣(x+2)√x2+4x+10∣∣=∫1(x+2)2+(6)2dx=log|(x+2)x2+4x+10| Using equations (2) and (3) in (1), we obtain ∫5x+3√x2+4x+10dx=52[2√x2+4x+10]−7log(x+2)+√x2+4x+10+C=5√x2+4x+10−7log(x+2)+√x2+4x+10|+C
Q24. Choose the correct answer ∫dxx2+2x+2∫dxx2+2x+2 equals (A) xtan−1(x+1)+C (B) tan−1(x+1)+C(C)(x+1)tan−1x+C (D) tan−1x+C
Answer. ∫dxx2+2x+2=∫dx(x2+2x+1)+1=∫1(x+1)2+(1)2dx=[tan−1(x+1)]+C∫dxx2+2x+2=∫dx(x2+2x+1)+1=∫1(x+1)2+(1)2dx=[tan−1(x+1)]+C Hence, the correct Answer is B.
Q25. Choose the correct answer ∫dx√9x−4x2∫dx9x−4x2 equals (A)19sin−1(9x−88)+C (B) 12sin−1(8x−99)+C(A)19sin−1(9x−88)+C (B) 12sin−1(8x−99)+C (C)13sin−1(9x−88)+C (D) 12sin−1(9x−89)+C
(C)13sin−1(9x−88)+C (D) 12sin−1(9x−89)+C
Answer. ∫dx√9x−4x2=∫1√−4(x2−94x)dxdx=∫1−4(x2−94x+8164−8164)dx∫dx9x−4x2=∫1−4(x2−94x)dxdx=∫1−4(x2−94x+8164−8164)dx =∫1√−4[(x−98)2−(98)2]dx=12∫1√(98)2−(x−98)2dx=∫1−4[(x−98)2−(98)2]dx=12∫1(98)2−(x−98)2dx =12[sin−1(x−9898)]+C(∫dy√a2−y2=sin−1ya+C)=12[sin−1(x−9898)]+C(∫dya2−y2=sin−1ya+C) =12sin−1(8x−99)+C Hence, the correct Answer is B.