NCERT Solutions Class 12 maths Chapter-7 (Integrals)Exercise 7.4

NCERT Solutions Class 12 maths Chapter-7 (Integrals)Exercise 7.4

NCERT Solutions Class 12 Maths from class 12th Students will get the answers of Chapter-7 (Integrals)Exercise 7.4 This chapter will help you to learn the basics and you should expect at least one question in your exam from this chapter.
We have given the answers of all the questions of NCERT Board Mathematics Textbook in very easy language, which will be very easy for the students to understand and remember so that you can pass with good marks in your examination.
NCERT Solutions Class 12 maths Chapter-7 (Integrals)Exercise 7.4

Exercise 7.4

Q1. Integrate the function : 

Answer. 

Q2. Integrate the function : 

Answer. Let 2x = t ∴ 2dx = dt 11+4x2dx=12dt1+t2=12[log|t+t2+1|]+C[1x2+a2dt=log|x+x2+a2|] 

Q3. Integrate the function : 1(2x)2+1

Answer. Let 2 − x = t ⇒ −dx = dt 1(2x)2+1dx=1t2+1dt=log|t+t2+1|+C[1x2+a2dt=log|x+x2+a2|] 
Q4. Integrate the function : 1925x2


Answer.Let 5x = t ∴ 5dx = dt 
Q5. Integrate the function : 3x1+2x4

Answer.  Let 2x2=t22xdx=dt3x1+2x4dx=322dt1+t2 
Q6. Integrate the function : x21x6

Answer. Let x3=t 3x2dx=dtx21x6dx=13dt1t2=13[12log|1+t1t|]+C 
Q7. Integrate the function : 
Answer. x1x21dx=xx21dx1x21dx....(1)  For xx21dx, let x21=t2xdx=dtxx21dx=12dtt =12t12dt=12[2t12]=t=x21 From ( 1), we obtain  x1x21dx=xx21dx1x21dx[1x2a2dt=log|x+x2a2|] 
Q8. Integrate the function : x2x6+a6

Answer.  Let x3=t3x2dx=dtx2x6+a6dx=13dtt2+(a3)2 
Q9. Integrate the function : sec2xtan2x+4

Answer.   Let tan x=tsec2xdx=dt 
Q10. Integrate the function : 1x2+2x+2

Answer.  1x2+2x+2dx=1(x+1)2+(1)2dx Let x+1=tdx=dt1x2+2x+2dx=1t2+1dt 

Q11. Integrate the function : 19x2+6x+5

Answer.  19x2+6x+5dx=1(3x+1)2+(2)2dx Let (3x+1)=t3dx=dt1(3x+1)2+(2)2dx=131t2+22dt 
Q12. Integrate the function : 176xx2

Answer.  76xx2 can be written as 7(x2+6x+99) Therefore, 7(x2+6x+99)=16(x2+6x+9)=16(x+3)2 =(4)2(x+3)2176xx2dx=1(4)2(x+3)2dx Let x+3=tdx=dt1(4)2(x+3)2dx=1(4)2(t)2dt 
Q13. Integrate the function : 
Answer.  (x1)(x2) can be written as x23x+2 Therefore, x23x+2=x23x+9494+2=(x32)214=(x32)2(12)2 1(x1)(x2)dx=1(x32)2(12)2dx Let x32=tdx=dt1(x32)2(12)2dx=1t2(12)2dt 
Q14. Integrate the function : 18+3xx2

Answer.  8+3xx2 can be written as 8(x23x+9494) Therefore, 8(x23x+9494)=414(x32)2 18+3xx2dx=1414(x32)2dx Let x32=tdx=dt1414(x32)2dx=1(412)2t2dt 
Q15. Integrate the function : 1(xa)(xb)

Answer.  (xa)(xb) can be written as x2(a+b)x+ab Therefore, x2(a+b)x+ab=x2(a+b)x+(a+b)24(a+b)24+ab=[x(a+b2)]2(ab)24 1(xa)(xb)dx=1{x(a+b2)}2(ab2)2dxLetx(a+b2)=tdx=dt1{x(a+b2)}2(ab2)2dx=1t2(ab2)2dt 
Q16. Integrate the function : 4x+12x2+x3

Answer.   Let 4x+1=Addx(2x2+x3)+B4x+1=A(4x+1)+B4x+1=4Ax+A+B Equating the coefficients of x and constant term on both sides, we obtain 4A = 4 ⇒ A = 1 A + B = 1 ⇒ B = 0  Let 2x2+x3=t(4x+1)dx=dt 
Q17. Integrate the function : x+2x21

Answer. 
 Let x+2=Addx(x21)+B(1)x+2=A(2x)+B Equating the coefficients of x and constant term on both sides, we obtain 2A=1A=12B=2 From (1), we obtain  (x+2)=12(2x)+2 Then, x+2x21dx=12(2x)+2x21dx=122xx21dx+2x21dx...(2) In122xx21dx, let x21=t2xdx=dt122xx21dx=12dtt=12[2t]=t=x21 

Q18. Integrate the function : 5x21+2x+3x2

Answer. 
 Let 5x2=Addx(1+2x+3x2)+B5x2=A(2+6x)+B Equating the coefficient of x and constant term on both sides, we obtain 5=6AA=562A+B=2B=1135x2=56(2+6x)+(113)5x21+2x+3x2dx=56(2+6x113)1+2x+3x2dx =562+6x1+2x+3x2dx11311+2x+3x2dx Let I1=2+6x1+2x+3x2dx and I2=11+2x+3x2dx5x21+2x+3x2dx=56I1113I2......(1) I1=2+6x1+2x+3x2dx Let 1+2x+3x2(2+6x)dx=dtI1=dttI1=log|t|I1=log|1+2x+3x2| I2=11+2x+3x2dx 1+2x+3x2 can be written as 1+3(x2+23x) Therefore, 1+3(x2+23x)=1+3(x2+23x+1919) =1+3(x+13)213=23+3(x+13)2=3[(x+13)2+29]=3[(x+13)2+(23)2] I2=131[(x+13)2+(23)2]dx=13[123tan1(x+1323)] =13[32tan1(3x+12)]=12tan1(3x+12..(3)) Substituting equations (2) and (3) in equation (1), we obtain 
Q19. Integrate the function : 6x+7(x5)(x4)


Answer.  6x+7(x5)(x4)=6x+7x29x+20 Let 6x+7=Addx(x29x+20)+B6x+7=A(2x9)+B Equating the coefficients of x and constant term, we obtain 2A = 6 ⇒ A = 3 −9A + B = 7 ⇒ B = 34 ∴ 6x + 7 = 3 (2x − 9) + 34 6x+7x29x+20=3(2x9)+34x29x+20dx=32x9x29x+20dx+341x29x+20dx  Let I1=2x9x29x+20dx and I2=1x29x+20dx6x+7x29x+20=3I1+34I2....(1)  Then, I1=2x9x29x+20dx Let x29x+20=t(2x9)dx=dtI1=dtt I1=2tI1=2x29x+20 and I2=1x29x+20dx x29x+20 can be written as x29x+20+814814 Therefore, x29x+20+814814=(x92)214 =(x92)2(12)2I2=(x92)2(12)2dx I2=log(x92)+x29x+20|........(3) Substituting equations (2) and (3) in (1), we obtain 6x+7x29x+20dx=3[2x29x+20]+34log[(x92)+x29x+20]+C 
Q20. Integrate the function : x+24xx2


Answer.   Let x+2=Addx(4xx2)+Bx+2=A(42x)+B Equating the coefficients of x and constant term on both sides, we obtain 2A=1A=124A+B=2B=4(x+2)=12(42x)+4x+24xx2dx=12(42x)+44xx2dx =1242x4xx2dx+414xx2dx Let I1=42x4xx2dx and I214xx2dxx+24xx2dx=12I1+4I2  Then, I1=42x4xx2dx Let 4xx2=t(42x)dx=dtI1=tdt=2t=24xx2 I2=14xx2dx4xx2=(4x+x2)=(4x+x2+44)=4(x2)2I2=1(2)2(x2)2dx=sin1(x22) Using equations (2) and (3) in (1), we obtain 
Q21. Integrate the function : x+2x2+2x+3

Answer.  (x+2)x2+2x+3dx=122(x+2)x2+2x+3dx=122x+4x2+2x+3dx=122x+2x2+2x+3dx+122x2+2x+3dx =122x+2x2+2x+3dx+1x2+2x+3dx Let I1=2x+2x2+2x+3dx and I2=1x2+2x+3dxx+2x2+2x+3dx=12I1+I2.....(1)  Then, I1=2x+2x2+2x+3dx Let x2+2x+3=t(2x+2)dx=dt I1=dtt=2t=2x2+2x+3...(2)I2=1x2+2x+3dx x2+2x+3=x2+2x+1+2=(x+1)2+(2)2I2=1(x+1)2+(2)2dx=log(x+1)+x2+2x+3|...(3) 
Q22. Integrate the function : 
Answer.   Let (x+3)=Addx(x22x5)+B(x+3)=A(2x2)+B Equating the coefficients of x and constant term on both sides, we obtain  2A=1A=122A+B=3B=4(x+3)=12(2x2)+4 x+3x22x5dx=12(2x2)+4x22x5dx=122x2x22x5dx+41x22x5dx  Let I1=2x2x22x5dx and I2=1x22x5dxx+3(x22x5)dx=12I1+4I2 Then ,I1=2x2x22x5dx  Let x22x5=t(2x2)dx=dtI1=dtt=log|t|=log|x22x5| I2=x22x5dx=1(x22x+1)6dx=1(x1)2+(6)2dx=126log(x16x1+6)  Substituting (2) and (3) in (1), we obtain x+3x22x5dx=12log|x22x5|+426log|x16x1+6|+C 

Q23. Integrate the function : 5x+3x2+4x+10


Answer.   Let 5x+3=Addx(x2+4x+10)+B5x+3=A(2x+4)+B Equating the coefficients of x and constant term, we obtain 2A=5A=52 4A+B=3B=75x+3=52(2x+4)75x+3x2+4x+10dx=52(2x+4)7x2+4x+10dx =522x+4x2+4x+10dx71x2+4x+10dx Let I1=2x+4x2+4x+10dx and I2=1x2+4x+10dx 5x+3x2+4x+10dx=52I17I2 Then I1=2x+4x2+4x+10dx Let x2+4x+10=t(2x+4)dx=dt I1=dtt=2t=2x2+4x+10I2=1x2+4x+10dx=1(x2+4x+4)+6dx =1(x+2)2+(6)2dx=log|(x+2)x2+4x+10| Using equations (2) and (3) in (1), we obtain 
Q24. Choose the correct answer dxx2+2x+2 equals 

dxx2+2x+2=dx(x2+2x+1)+1=1(x+1)2+(1)2dx=[tan1(x+1)]+C Hence, the correct Answer is B.

Q25. Choose the correct answer dx9x4x2 equals (A)19sin1(9x88)+C (B) 12sin1(8x99)+C (C)13sin1(9x88)+C (D) 12sin1(9x89)+C

Answer.  dx9x4x2=14(x294x)dxdx=14(x294x+81648164)dx =14[(x98)2(98)2]dx=121(98)2(x98)2dx =12[sin1(x9898)]+C(dya2y2=sin1ya+C)