NCERT Solutions Class 12 maths Chapter-7 (Integrals) Exercise 7.3

NCERT Solutions Class 12 maths Chapter-7 (Integrals)Exercise 7.3

NCERT Solutions Class 12 Maths from class 12th Students will get the answers of Chapter-7 (Integrals)Exercise 7.3 This chapter will help you to learn the basics and you should expect at least one question in your exam from this chapter.
We have given the answers of all the questions of NCERT Board Mathematics Textbook in very easy language, which will be very easy for the students to understand and remember so that you can pass with good marks in your examination.
NCERT Solutions Class 12 maths Chapter-7 (Integrals) Exercise 7.3

Exercise 7.3

Q1. Find the integrals of the functions : sin2(2x+5)



Answer. 

Q2. Find the integrals of the functions : 

Answer. It is known that, sinAcosB=12{sin(A+B)+sin(AB)}sin3xcos4xdx=12{sin(3x+4x)+sin(3x4x)}dx=12{sin7x+sin(x)}dx=12{sin7xsinx}dx 
Q3. Find the integrals of the functions : cos 2x cos 4x cos 6x

Answer.  It is known that, cosAcosB=12{cos(A+B)+cos(AB)}cos2x(cos4xcos6x)dx=cos2x[12{cos(4x+6x)+cos(4x6x)}]dx=12{cos2xcos10x+cos2xcos(2x)}dx=12{cos2xcos10x+cos22x}dx 

Q4. Find the integrals of the function : 

Answer.  Let I=sin3(2x+1)sin3(2x+1)dx=sin2(2x+1)sin(2x+1)dx =(1cos2(2x+1))sin(2x+1)dx Let cos(2x+1)=t 2sin(2x+1)dx=dtsin(2x+1)dx=dt2 
Q5. Find the integrals of the function : 

Answer.  Let I=sin3xcos3xdx=cos3xsin2xsinxdx=cos3x(1cos2x)sinxdxLetcosx=tsinxdx=dtI=t3(1t2)dt 
Q6. Find the integrals of the function : sin x sin 2x sin 3x

Answer. It is known that, sinAsinB=12{cos(AB)cos(A+B)}sinxsin2xsin3xdx=[sinx12{cos(2x3x)cos(2x+3x)}]dx=12(sinxcos(x)sinxcos5x)dx =12(sinxcosxsinxcos5x)dx=12sin2x2dx12sinxcos5xdx=14[cos2x2]12{12sin(x+5x)+sin(x5x)}dx 

Q7. Find the integrals of the function : sin 4x sin 8x

Answer. It is known that, sinAsinB=12cos(AB)cos(A+B) 

Q8. Find the integrals of the function : 

Answer. 1cosx1+cosx=2sin222cos2x2sin2x2=1cosx and 2cos2x2=1+cosx] =tan2x2=(sec2x21)1cosx1+cosxdx=(sec2x21)dx 

Q9. Find the integrals of the function : 

Answer. cosx1+cosx=cos2x2sin2x22cos2x2[cosx=cos2x2sin2x2 and cosx=2cos2x21] =12[1tan2x2]cosx1+cosxdx=12(1tan2x2)dx=12(1sec2x2+1)dx 

Q10. Find the integrals of the function : 

Answer. sin4x=sin2xsin2x=(1cos2x2)(1cos2x2)=14(1cos2x)2=14[1+cos22x2cos2x]=14[1+(1+cos4x2)2cos2x] =14[1+12+12cos4x2cos2x]=14[32+12cos4x2cos2x] 

Q11. Find the integrals of the function : 

Answer. cos42x=(cos22x)2=(1+cos4x2)2=14[1+cos24x+2cos4x]=14[1+(1+cos8x2)+2cos4x] =14[1+12+cos8x2+2cos4x]=14[32+cos8x2+2cos4x] 

Q12. Find the integrals of the function : 

Answer. sin2x1+cosx=(2sinx2cosx2)22cos2x2[sinx=2sinx2cosx2;cosx=2cos2x21] =4sin2x2cos2x22cos2x2=2sin2x2=1cosx 
Q13. Find the integrals of the function : 

Answer. cos2xcos2αcosxcosα=2sin2x+2α2sin2x2α22sinx+α2sinxα2[cosCcosD=2sinC+D2sinCD2] =sin(x+α)sin(xα)sin(x+α2)sin(xα2)=[2sin(x+α2)cos(x+α2)][2sin(xα2)cos(xα2)]sin(x+α2)sin(xα2) =4cos(x+α2)cos(xα2)=2[cos(x+α2+xα2)+cosx+α2xα2]=2[cos(x)+cosα]=2cosx+2cosα 

Q14. Find the integrals of the function : 
Answer. cosxsinx1+sin2x=cosxsinx(sin2x+cos2x)+2sinxcosx[sin2x+cos2x=1;sin2x=2sinxcosx] =cosxsinx(sinx+cosx)2 Let sinx+cosx=t(cosxsinx)dx=dt 
Q15. Find the integrals of the function : 
Answer. tan32xsec2x=tan22xtan2xsec2x=(sec22x1)tan2xsec2x=sec22xtan2xsec2xtan2xsec2xtan32xsec2xdx=sec22xtan2xsec2xdxtan2xsec2xdx =sec22xtan2xsec2xdxsec2x2+C Let sec2x=t2sec2xtan2xdx=dt 

Q16. Find the integrals of the function : tan4x


Answer. tan4x=tan2xtan2x=(sec2x1)tan2x=sec2xtan2xtan2x=sec2xtan2x(sec2x1)=sec2xtan2xsec2x+1 tan4xdx=sec2xtan2xdxsec2xdx+1dx=sec2xtan2xdxtanx+x+C...(1) Consider sec2xtan2xdx Let tanx=tsec2xdx=dtsec2xtan2xdx=t2dt=t33=tan3x3 

Q17. Find the integrals of the function : sin3x+cos3xsin2xcos2x


Answer. sin3x+cos3xsin2xcos2x=sin3xsin2xcos2x+cos3xsin2xcos2x=sinxcos2x+cosxsin2x=tanxsecx+cotxcscx 

Q18. Find the integrals of the function : 

Answer. cos2x+2sin2xcos2x =cos2x+(1cos2x)cos2x[cos2x=12sin2x] 

Q19. Find the integrals of the function : 1sinxcos3x


Answer. 1sinxcos3x=sin2x+cos2xsinxcos3x=sinxcos3x+1sinxcosx=tanxsec2x+1cos2xcos2x=tanxsec2x+sec2xtanx 1sinxcos3xdx=tanxsec2xdx+sec2xtanxdx Let tanx=tsec2xdx=dt1sinxcos3xdx=tdt+t1dt 

Q20. Find the integrals of the function : 
Answer. cos2x(cosx+sinx)2=cos2xcos2x+sin2x+2sinxcosx=cos2x1+sin2xcos2x(cosx+sinx)2dx=cos2x(1+sin2x)dx cos2x(cosx+sinx)2dx=cos2x(1+sin2x)dx Let 1+sin2x=t2cos2xdx=dtcos2x(cosx+sinx)2dx=12t1dt 
Q21. Find the integrals of the function : sin1(cosx)

Answer. sin1(cosx) Let cosx=t Then, sinx=1t2 (sinx)dx=dtdx=dtsinxdx=dt1t2sin1(cosx)dx=sin1t(dt1t2) =sin1t1t2dt Let sin1t=u11t2dt=dusin1(cosx)dx=4du =u22+C=(sin1t)22+C=[sin1(cosx)]22+C  It is known that, sin1x+cos1x=π2sin1(cosx)=π2cos1(cosx)=(π2x) Substituting in equation (1), we obtain  

Q22. Find the integrals of the function : 
Answer. 1cos(xa)cos(xb)=1sin(ab)[sin(ab)cos(xa)cos(xb)]=1sin(ab)[sin[(xb)(xa)]cos(xa)cos(xb)]]=1sin(ab)[sin(xb)cos(xa)cos(xb)sin(xa)]sin(ab) 

Q23. Choose the correct answer sin2xcos2xsin2xcos2xdx is equal to (A) tan x + cot x + C (B) tan x + cosec x + C (C) – tan x + cot x + C (D) tan x + sec x + C

Answer. 

Q24. ex(1+x)cos2(exx) equals 

Answer. ex(1+x)cos2(exx) Let exx = t (exx+ex1)dx=dtex(x+1)dx=dtex(1+x)cos2(exx)dx=dtcos2t =sec2tdt=tant+C=tan(exx)+C Hence, the correct Answer is B.