NCERT Solutions Class 12 maths Chapter-7 (Integrals)Exercise 7.3
NCERT Solutions Class 12 Maths from class 12th Students will get the answers of Chapter-7 (Integrals)Exercise 7.3 This chapter will help you to learn the basics and you should expect at least one question in your exam from this chapter.
We have given the answers of all the questions of
NCERT Board Mathematics Textbook in very easy language, which will be very easy for the students to understand and remember so that you can pass with good marks in your examination.
Exercise 7.3
Q1. Find the integrals of the functions : sin2(2x+5) Q3. Find the integrals of the functions : cos 2x cos 4x cos 6x
Answer. It is known that, cosAcosB=12{cos(A+B)+cos(A−B)}∴∫cos2x(cos4xcos6x)dx=∫cos2x[12{cos(4x+6x)+cos(4x−6x)}]dx=12∫{cos2xcos10x+cos2xcos(−2x)}dx=12∫{cos2xcos10x+cos22x}dx It is known that, cosAcosB=12{cos(A+B)+cos(A−B)}∴∫cos2x(cos4xcos6x)dx=∫cos2x[12{cos(4x+6x)+cos(4x−6x)}]dx=12∫{cos2xcos10x+cos2xcos(−2x)}dx=12∫{cos2xcos10x+cos22x}dx =12∫[{12cos(2x+10x)+cos(2x−10x)}+(1+cos4x2)]dx=14∫(cos12x+cos8x+1+cos4x)dx=14[sin12x12+sin8x8+x+sin4x4]+C
Q4. Find the integrals of the function : sin3(2x+1)
Answer. Let I=∫sin3(2x+1)⇒∫sin3(2x+1)dx=∫sin2(2x+1)⋅sin(2x+1)dx Let I=∫sin3(2x+1)⇒∫sin3(2x+1)dx=∫sin2(2x+1)⋅sin(2x+1)dx =∫(1−cos2(2x+1))sin(2x+1)dx Let cos(2x+1)=t=∫(1−cos2(2x+1))sin(2x+1)dx Let cos(2x+1)=t ⇒−2sin(2x+1)dx=dt⇒sin(2x+1)dx=−dt2⇒−2sin(2x+1)dx=dt⇒sin(2x+1)dx=−dt2 ⇒I=−12∫(1−t2)dt=−12{t−t33}=−12{cos(2x+1)−cos3(2x+1)3}=−cos(2x+1)2+cos3(2x+1)6+C
Q5. Find the integrals of the function : sin3xcos3x
Answer. Let I=∫sin3xcos3x⋅dx=∫cos3x⋅sin2x⋅sinx⋅dx=∫cos3x(1−cos2x)sinx⋅dxLetcosx=t⇒−sinx⋅dx=dt⇒I=−∫t3(1−t2)dt Let I=∫sin3xcos3x⋅dx=∫cos3x⋅sin2x⋅sinx⋅dx=∫cos3x(1−cos2x)sinx⋅dxLetcosx=t⇒−sinx⋅dx=dt⇒I=−∫t3(1−t2)dt =−∫(t3−t5)dt=−{t44−t66}+C=−{cos4x4−cos6x6}+C=cos6x6−cos4x4+C
Q6. Find the integrals of the function : sin x sin 2x sin 3x
Answer. It is known that, sinAsinB=12{cos(A−B)−cos(A+B)}∴∫sinxsin2xsin3xdx=∫[sinx⋅12{cos(2x−3x)−cos(2x+3x)}]dx=12∫(sinxcos(−x)−sinxcos5x)dxsinAsinB=12{cos(A−B)−cos(A+B)}∴∫sinxsin2xsin3xdx=∫[sinx⋅12{cos(2x−3x)−cos(2x+3x)}]dx=12∫(sinxcos(−x)−sinxcos5x)dx =12∫(sinxcosx−sinxcos5x)dx=12∫sin2x2dx−12∫sinxcos5xdx=14[−cos2x2]−12∫{12sin(x+5x)+sin(x−5x)}dx=12∫(sinxcosx−sinxcos5x)dx=12∫sin2x2dx−12∫sinxcos5xdx=14[−cos2x2]−12∫{12sin(x+5x)+sin(x−5x)}dx =−cos2x8−14∫(sin6x+sin(−4x))dx=−cos2x8−14[−cos6x3+cos4x4]+C=−cos2x8−18[−cos6x3+cos4x2]+C=18[cos6x3−cos4x2−cos2x]+C
Q7. Find the integrals of the function : sin 4x sin 8x
Answer. It is known that, sinAsinB=12cos(A−B)−cos(A+B)sinAsinB=12cos(A−B)−cos(A+B) ∴∫sin4xsin8xdx=∫{12cos(4x−8x)−cos(4x+8x)}dx=12∫(cos(−4x)−cos12x)dx=12∫(cos4x−cos12x)dx=12[sin4x4−sin12x12]
Q8. Find the integrals of the function : 1−cosx1+cosx
Answer. 1−cosx1+cosx=2sin222cos2x2sin2x2=1−cosx and 2cos2x2=1+cosx]1−cosx1+cosx=2sin222cos2x2sin2x2=1−cosx and 2cos2x2=1+cosx] =tan2x2=(sec2x2−1)∴∫1−cosx1+cosxdx=∫(sec2x2−1)dx=tan2x2=(sec2x2−1)∴∫1−cosx1+cosxdx=∫(sec2x2−1)dx =[x−21−x]+C=2tanx2−x+C
Q9. Find the integrals of the function : cosx1+cosx
Answer. cosx1+cosx=cos2x2−sin2x22cos2x2[cosx=cos2x2−sin2x2 and cosx=2cos2x2−1]cosx1+cosx=cos2x2−sin2x22cos2x2[cosx=cos2x2−sin2x2 and cosx=2cos2x2−1] =12[1−tan2x2]∴cosx1+cosxdx=12∫(1−tan2x2)dx=12∫(1−sec2x2+1)dx=12[1−tan2x2]∴cosx1+cosxdx=12∫(1−tan2x2)dx=12∫(1−sec2x2+1)dx =12[2x−tanx212]+C=x−tanx2+C
Q10. Find the integrals of the function : sin4x
Answer. sin4x=sin2xsin2x=(1−cos2x2)(1−cos2x2)=14(1−cos2x)2=14[1+cos22x−2cos2x]=14[1+(1+cos4x2)−2cos2x]sin4x=sin2xsin2x=(1−cos2x2)(1−cos2x2)=14(1−cos2x)2=14[1+cos22x−2cos2x]=14[1+(1+cos4x2)−2cos2x] =14[1+12+12cos4x−2cos2x]=14[32+12cos4x−2cos2x]=14[1+12+12cos4x−2cos2x]=14[32+12cos4x−2cos2x] ∴∫sin4xdx=14∫[32+12cos4x−2cos2x]dx=14[32x+12(sin4x4)−2sin2x2]+C=18[3x+sin4x4−2sin2x]+C=3x8−14sin2x+132sin4x+C
Q11. Find the integrals of the function : cos42x
Answer. cos42x=(cos22x)2=(1+cos4x2)2=14[1+cos24x+2cos4x]=14[1+(1+cos8x2)+2cos4x]cos42x=(cos22x)2=(1+cos4x2)2=14[1+cos24x+2cos4x]=14[1+(1+cos8x2)+2cos4x] =14[1+12+cos8x2+2cos4x]=14[32+cos8x2+2cos4x]=14[1+12+cos8x2+2cos4x]=14[32+cos8x2+2cos4x] ∴∫cos42xdx=∫(38+cos8x8+cos4x2)dx=38x+sin8x64+sin4x8+C
Q12. Find the integrals of the function : sin2x1+cosx
Answer. sin2x1+cosx=(2sinx2cosx2)22cos2x2[sinx=2sinx2cosx2;cosx=2cos2x2−1]sin2x1+cosx=(2sinx2cosx2)22cos2x2[sinx=2sinx2cosx2;cosx=2cos2x2−1] =4sin2x2cos2x22cos2x2=2sin2x2=1−cosx=4sin2x2cos2x22cos2x2=2sin2x2=1−cosx ∴∫sin−x1+cosxdx=∫(1−cosx)dx=x−sinx+C
Q13. Find the integrals of the function : cos2x−cos2αcosx−cosα
Answer. cos2x−cos2αcosx−cosα=−2sin2x+2α2sin2x−2α2−2sinx+α2sinx−α2[cosC−cosD=−2sinC+D2sinC−D2]cos2x−cos2αcosx−cosα=−2sin2x+2α2sin2x−2α2−2sinx+α2sinx−α2[cosC−cosD=−2sinC+D2sinC−D2] =sin(x+α)sin(x−α)sin(x+α2)sin(x−α2)=[2sin(x+α2)cos(x+α2)][2sin(x−α2)cos(x−α2)]sin(x+α2)sin(x−α2)=sin(x+α)sin(x−α)sin(x+α2)sin(x−α2)=[2sin(x+α2)cos(x+α2)][2sin(x−α2)cos(x−α2)]sin(x+α2)sin(x−α2) =4cos(x+α2)cos(x−α2)=2[cos(x+α2+x−α2)+cosx+α2−x−α2]=2[cos(x)+cosα]=2cosx+2cosα=4cos(x+α2)cos(x−α2)=2[cos(x+α2+x−α2)+cosx+α2−x−α2]=2[cos(x)+cosα]=2cosx+2cosα ∴∫cos2x−cos2αcosx−cosαdx=∫2cosx+2cosα=2[sinx+xcosα]+C
Q14. Find the integrals of the function : cosx−sinx1+sin2x
Answer. cosx−sinx1+sin2x=cosx−sinx(sin2x+cos2x)+2sinxcosxcosx−sinx1+sin2x=cosx−sinx(sin2x+cos2x)+2sinxcosx[sin2x+cos2x=1;sin2x=2sinxcosx][sin2x+cos2x=1;sin2x=2sinxcosx] =cosx−sinx(sinx+cosx)2 Let sinx+cosx=t∴(cosx−sinx)dx=dt=cosx−sinx(sinx+cosx)2 Let sinx+cosx=t∴(cosx−sinx)dx=dt ⇒∫cosx−sinx1+sin2xdx=∫cosx−sinx(sinx+cosx)2dx=∫dtt2=∫t−2dt=−t−1+C=−t−1+C=−1sinx+cosx+C=1sinx+cosx+C
Q15. Find the integrals of the function : tan32xsec2x
Answer. tan32xsec2x=tan22xtan2xsec2x=(sec22x−1)tan2xsec2x=sec22x⋅tan2xsec2x−tan2xsec2x∴∫tan32xsec2xdx=∫sec22xtan2xsec2xdx−∫tan2xsec2xdxtan32xsec2x=tan22xtan2xsec2x=(sec22x−1)tan2xsec2x=sec22x⋅tan2xsec2x−tan2xsec2x∴∫tan32xsec2xdx=∫sec22xtan2xsec2xdx−∫tan2xsec2xdx =∫sec22xtan2xsec2xdx−sec2x2+C Let sec2x=t∴2sec2xtan2xdx=dt=∫sec22xtan2xsec2xdx−sec2x2+C Let sec2x=t∴2sec2xtan2xdx=dt ∴∫tan32xsec2xdx=12∫t2dt−sec2x2+C=t36−sec2x2+C=(sec2x)36−sec2x2+C
Q16. Find the integrals of the function : tan4xtan4x
Answer. tan4x=tan2x⋅tan2x=(sec2x−1)tan2x=sec2xtan2x−tan2x=sec2xtan2x−(sec2x−1)=sec2xtan2x−sec2x+1tan4x=tan2x⋅tan2x=(sec2x−1)tan2x=sec2xtan2x−tan2x=sec2xtan2x−(sec2x−1)=sec2xtan2x−sec2x+1 ∴∫tan4xdx=∫sec2xtan2xdx−∫sec2xdx+∫1⋅dx=∫sec2xtan2xdx−tanx+x+C...(1) Consider ∫sec2xtan2xdx Let tanx=t⇒sec2xdx=dt⇒∫sec2xtan2xdx=∫t2dt=t33=tan3x3∴∫tan4xdx=∫sec2xtan2xdx−∫sec2xdx+∫1⋅dx=∫sec2xtan2xdx−tanx+x+C...(1) Consider ∫sec2xtan2xdx Let tanx=t⇒sec2xdx=dt⇒∫sec2xtan2xdx=∫t2dt=t33=tan3x3 From equation (1), we obtain ∫tan4xdx=13tan3x−tanx+x+C
Q17. Find the integrals of the function : sin3x+cos3xsin2xcos2xsin3x+cos3xsin2xcos2x
Answer. sin3x+cos3xsin2xcos2x=sin3xsin2xcos2x+cos3xsin2xcos2x=sinxcos2x+cosxsin2x=tanxsecx+cotxcscxsin3x+cos3xsin2xcos2x=sin3xsin2xcos2x+cos3xsin2xcos2x=sinxcos2x+cosxsin2x=tanxsecx+cotxcscx ∴∫sin3x+cos3xsin2xcos2xdx=∫(tanxsecx+cotxcscx)dx=secx−cscx+C
Q18. Find the integrals of the function : cos2x+2sin2xcos2x
Answer. cos2x+2sin2xcos2xcos2x+2sin2xcos2x =cos2x+(1−cos2x)cos2x[cos2x=1−2sin2x]=cos2x+(1−cos2x)cos2x[cos2x=1−2sin2x] =1cos2x=sec2x∴∫cos2x+2sin2xcos2xdx=∫sec2xdx=tanx+C
Q19. Find the integrals of the function : 1sinxcos3x1sinxcos3x
Answer. 1sinxcos3x=sin2x+cos2xsinxcos3x=sinxcos3x+1sinxcosx=tanxsec2x+1cos2xcos2x=tanxsec2x+sec2xtanx1sinxcos3x=sin2x+cos2xsinxcos3x=sinxcos3x+1sinxcosx=tanxsec2x+1cos2xcos2x=tanxsec2x+sec2xtanx ∴∫1sinxcos3xdx=∫tanxsec2xdx+∫sec2xtanxdx Let tanx=t⇒sec2xdx=dt⇒∫1sinxcos3xdx=∫tdt+∫1tdt∴∫1sinxcos3xdx=∫tanxsec2xdx+∫sec2xtanxdx Let tanx=t⇒sec2xdx=dt⇒∫1sinxcos3xdx=∫tdt+∫t1dt =t22+|logt|+C=12tan2x+|log|tanx|+C
Q20. Find the integrals of the function : cos2x(cosx+sinx)2
Answer. cos2x(cosx+sinx)2=cos2xcos2x+sin2x+2sinxcosx=cos2x1+sin2x∴∫cos2x(cosx+sinx)2dx=∫cos2x(1+sin2x)dxcos2x(cosx+sinx)2=cos2xcos2x+sin2x+2sinxcosx=cos2x1+sin2x∴∫cos2x(cosx+sinx)2dx=∫cos2x(1+sin2x)dx ∴∫cos2x(cosx+sinx)2dx=∫cos2x(1+sin2x)dx Let 1+sin2x=t⇒2cos2xdx=dt∴∫cos2x(cosx+sinx)2dx=12∫1tdt∴∫cos2x(cosx+sinx)2dx=∫cos2x(1+sin2x)dx Let 1+sin2x=t⇒2cos2xdx=dt∴∫cos2x(cosx+sinx)2dx=12∫t1dt =12log|t|+C=12log|1+sin2x|+C=12log∣∣(sinx+cosx)2∣∣+C=log|sinx+cosx|+C
Q21. Find the integrals of the function : sin−1(cosx)sin−1(cosx)
Answer. sin−1(cosx) Let cosx=t Then, sinx=√1−t2sin−1(cosx) Let cosx=t Then, sinx=1−t2 ⇒(−sinx)dx=dtdx=−dtsinxdx=−dt√1−t2∴∫sin−1(cosx)dx=∫sin−1t(−dt√1−t2)⇒(−sinx)dx=dtdx=−dtsinxdx=−dt1−t2∴∫sin−1(cosx)dx=∫sin−1t(−dt1−t2) =−∫sin−1t√1−t2dt Let sin−1t=u⇒1√1−t2dt=du∴∫sin−1(cosx)dx=∫4du=−∫sin−1t1−t2dt Let sin−1t=u⇒11−t2dt=du∴∫sin−1(cosx)dx=∫4du =−u22+C=−(sin1t)22+C=−[sin−1(cosx)]22+C=−u22+C=−(sin1t)22+C=−[sin−1(cosx)]22+C It is known that, sin−1x+cos−1x=π2∴sin−1(cosx)=π2−cos−1(cosx)=(π2−x) Substituting in equation (1), we obtain It is known that, sin−1x+cos−1x=π2∴sin−1(cosx)=π2−cos−1(cosx)=(π2−x) Substituting in equation (1), we obtain ∫sin−1(cosx)dx=−[π2−x]22+C=−12(π22+x2−πx)+C=πx8−x22+12πx+C=πx2−x22+(C−π28)=πx2−x22+C1
Q22. Find the integrals of the function : 1cos(x−a)cos(x−b)
Answer. 1cos(x−a)cos(x−b)=1sin(a−b)[sin(a−b)cos(x−a)cos(x−b)]=1sin(a−b)[sin[(x−b)−(x−a)]cos(x−a)cos(x−b)]]=1sin(a−b)[sin(x−b)cos(x−a)−cos(x−b)sin(x−a)]sin(a−b)1cos(x−a)cos(x−b)=1sin(a−b)[sin(a−b)cos(x−a)cos(x−b)]=1sin(a−b)[sin[(x−b)−(x−a)]cos(x−a)cos(x−b)]]=1sin(a−b)[sin(x−b)cos(x−a)−cos(x−b)sin(x−a)]sin(a−b) =1sin(a−b)[tan(x−b)−tan(x−a)]⇒∫1cos(x−a)cos(x−b)dx=1sin(a−b)∫[tan(x−b)−tan(x−a)]dx=1sin(a−b)[−log|cos(x−b)|+logcos(x−a)|]=1sin(a−b)[log∣∣∣cos(x−a)cos(x−b)∣∣∣]+C
Q23. Choose the correct answer ∫sin2x−cos2xsin2xcos2xdx∫sin2x−cos2xsin2xcos2xdx is equal to (A) tan x + cot x + C (B) tan x + cosec x + C (C) – tan x + cot x + C (D) tan x + sec x + C
Answer. ∫sin2x−cos2xsin2xcos2xdx=∫sin2xsin2xcos2x−cos2xsin2xcos2x)dx=∫(sec2x−csc2x)dx=tanx+cotx+C Hence, the correct Answer is A
Q24. ∫ex(1+x)cos2(exx)∫ex(1+x)cos2(exx) equals (A)−cot(exx)+C(B)tan(xex)+C(C)tan(ex)+C(D)cot(ex)+C
Answer. ∫ex(1+x)cos2(exx)∫ex(1+x)cos2(exx) Let exx = t ⇒(ex⋅x+ex⋅1)dx=dtex(x+1)dx=dt∴∫ex(1+x)cos2(exx)dx=∫dtcos2t⇒(ex⋅x+ex⋅1)dx=dtex(x+1)dx=dt∴∫ex(1+x)cos2(exx)dx=∫dtcos2t =∫sec2tdt=tant+C=tan(ex⋅x)+C=∫sec2tdt=tant+C=tan(ex⋅x)+C Hence, the correct Answer is B.