NCERT Solutions Class 12 Maths Chapter-7 (Integrals)Exercise 7.11
NCERT Solutions Class 12 Maths from class 12th Students will get the answers of Chapter-7 (Integrals)Exercise 7.11 This chapter will help you to learn the basics and you should expect at least one question in your exam from this chapter.
We have given the answers of all the questions of NCERT Board Mathematics Textbook in very easy language, which will be very easy for the students to understand and remember so that you can pass with good marks in your examination.
Exercise 7.11
Q1. By using the properties of definite integrals, evaluate the integral. ∫π20cos2xdx
Answer. I=∫π20cos2xdx ……..(1) ⇒I=∫π20cos2(π2−x)dx(∫a0f(x)dx=∫a0f(a−x)dx) ⇒I=∫π20sin2xdx ………..(2) Adding (1) and (2), we obtain 2I=∫π2b(sin2x+cos2x)dx⇒2I=∫π201dx⇒2I=[x]π20⇒2I=π2⇒I=π4
Q2. By using the properties of definite integrals, evaluate the integral. ∫π20√sinx√sinx+√cosxdx
Answer. ∫π20√sinx√sinx+√cosxdx Let I=∫π20√sinx√sinx+√cosxdx.......(1) ⇒I=∫π20√sin(π2−x)√sin(π2−x)+√cos(π2−x)dx(∫a0f(x)dx=∫a0f(a−x)dx) ⇒I=∫π20√cos√cos+√sinxdx......(2) Adding (1) and (2), we obtain 2I=∫π20√sinx+√cosx√sinx+√cosxdx⇒2I=∫π201dx⇒2I=[x]π20⇒2I=π2⇒I=π4
Q3. By using the properties of definite integrals, evaluate the integral. ∫π20sin32xdxsin32x+cos32x
Q4. By using the properties of definite integrals, evaluate the integral. ∫π20cos5xdxsin5x+cos5x
Answer. LetI=∫π20cos5xsin5x+cos5xdx......(1)LetI=∫0π2cos5xsin5x+cos5xdx......(1) ⇒I=∫π20cos5(π2−x)sin5(π2−x)+cos5(π2−x)dx(∫a0f(x)dx=∫a0f(a−x)dx)⇒I=∫0π2cos5(π2−x)sin5(π2−x)+cos5(π2−x)dx(∫0af(x)dx=∫0af(a−x)dx) ⇒I=∫π20sin5xsin5x+cos5xdx.....(2)⇒I=∫0π2sin5xsin5x+cos5xdx.....(2) Adding (1) and (2), we obtain 2I=∫π20sin5x+cos5xsin5x+cos5xdx⇒2I=∫x201dx⇒2I=[x]π20⇒2I=π2⇒I=π4
Q5. By using the properties of definite integrals, evaluate the integral. ∫5−5|x+2|dx
Answer. I=∫5−5|x+2|dxI=∫−55|x+2|dx It can be seen that (x+2) ≤0 on [−5,−2] and (x+2)≥0 on [−2,5]≤0 on [−5,−2] and (x+2)≥0 on [−2,5] ∴I=∫−2−5−(x+2)dx+∫5−2(x+2)dx(∫baf(x)=∫caf(x)+∫bcf(x))∴I=∫−5−2−(x+2)dx+∫−25(x+2)dx(∫abf(x)=∫acf(x)+∫cbf(x)) I=−[x22+2x]−2−5+[x22+2x]5−2I=−[x22+2x]−5−2+[x22+2x]−25 =−[(−2)22+2(−2)−(−5)22−2(−5)]+[(5)22+2(5)−(−2)22−2(−2)]=−[(−2)22+2(−2)−(−5)22−2(−5)]+[(5)22+2(5)−(−2)22−2(−2)] =−[2−4−252+10]+[252+10−2+4]=−2+4+252−10+252+10−2+4=29
Q6. By using the properties of definite integrals, evaluate the integral. ∫82|x−5|dx∫28|x−5|dx
Answer. Let I=∫62|x−5|dx It can be seen that (x−5)≤0 on [2,5] and (x−5)≥0 on [5,8] Let I=∫26|x−5|dx It can be seen that (x−5)≤0 on [2,5] and (x−5)≥0 on [5,8] I=∫s2−(x−5)dx+∫s2(x−5)dx(∫baf(x)=∫taf(x)+∫bcf(x))I=∫2s−(x−5)dx+∫2s(x−5)dx(∫abf(x)=∫atf(x)+∫cbf(x)) =−[x22−5x]5+[x22−5x]85=−[252−25−2+10]+[32−40−252+25]=9
Q7. By using the properties of definite integrals, evaluate the integral. ∫10x(1−x)ndx∫01x(1−x)ndx
Answer. Let I=∫10x(1−x)ndx∴I=∫10(1−x)(1−(1−x))ndx Let I=∫01x(1−x)ndx∴I=∫01(1−x)(1−(1−x))ndx =∫10(1−x)(x)ndx=∫10(xn−xn+1)dx=∫01(1−x)(x)ndx=∫01(xn−xn+1)dx =[xn+1n+1−xn+2n+2]10(∫01f(x)dx=∫01f(a−x)dx)=[xn+1n+1−xn+2n+2]01(∫10f(x)dx=∫10f(a−x)dx) =[1n+1−1n+2]=(n+2)−(n+1)(n+1)(n+2)=1(n+1)(n+2)
Q8. By using the properties of definite integrals, evaluate the integral. ∫π40log(1+tanx)dx∫0π4log(1+tanx)dx
Answer. I=∫π40log(1+tanx)dx.....(1)I=∫0π4log(1+tanx)dx.....(1) ∴I=∫π40log[1+tan(π4−x)]dx(∫a0f(x)dx=∫a0f(a−x)dx)∴I=∫0π4log[1+tan(π4−x)]dx(∫0af(x)dx=∫0af(a−x)dx) ⇒I=∫π40log{1+tanπ4−tanx1+tanπ4tanx}dx⇒I=∫π40log{1+1−tanx1+tan}dx⎫⎪
⎪
⎪⎬⎪
⎪
⎪⎭dx⇒I=∫0π4log{1+tanπ4−tanx1+tanπ4tanx}dx⇒I=∫0π4log{1+1−tanx1+tan}dx}dx ⇒I=∫π40log2(1+tanx)dx⇒I=∫π40log2dx−∫π40log(1+tanx)dx⇒I=∫0π4log2(1+tanx)dx⇒I=∫0π4log2dx−∫0π4log(1+tanx)dx ⇒I=∫π40log2dx−I⇒I=∫0π4log2dx−I ⇒2I=[xlog2]π40⇒2I=π4log2⇒I=π8log2
Q9. By using the properties of definite integrals, evaluate the integral. ∫20x√2−xdx∫02x2−xdx
Answer. Let I=∫20x√2−xdxI=∫20(2−x)√xdx(∫a0f(x)dx=∫a0f(a−x)dx) Let I=∫02x2−xdxI=∫02(2−x)xdx(∫0af(x)dx=∫0af(a−x)dx) =∫20{2x12−x32}dx=[2(x322)−x522]20=∫02{2x12−x32}dx=[2(x322)−x522]02 =[43x32−25x52]20=43(2)32−25(2)52=[43x32−25x52]02=43(2)32−25(2)52 =4×2√23−25×4√2=8√23−8√25=40√2−24√215=16√215
Q10. By using the properties of definite integrals, evaluate the integral. ∫π20(2logsinx−logsin2x)dx
Answer. Let I=∫π20(2logsinx−logsin2x)dx⇒I=∫x20{2logsinx−log(2sinxcosx)}dx Let I=∫0π2(2logsinx−logsin2x)dx⇒I=∫0x2{2logsinx−log(2sinxcosx)}dx ⇒I=∫π20{2logsinx−logsinx−logcosx−log2}dx⇒I=∫π20{logsinx−logcosx−log2}dx.....(1)⇒I=∫0π2{2logsinx−logsinx−logcosx−log2}dx⇒I=∫0π2{logsinx−logcosx−log2}dx.....(1) It is known that, (∫a0f(x)dx=∫a0f(a−x)dx)(∫0af(x)dx=∫0af(a−x)dx) ⇒I=∫π20{logcosx−logsinx−log2}dx…(2) Adding (1) and (2), we obtain ⇒I=∫0π2{logcosx−logsinx−log2}dx…(2) Adding (1) and (2), we obtain 2I=∫π20(−log2−log2)dx⇒2I=−2log2∫π01dx⇒I=−log2[π2]2I=∫0π2(−log2−log2)dx⇒2I=−2log2∫0π1dx⇒I=−log2[π2] ⇒I=π2[log12]⇒I=π2log12
Q11. By using the properties of definite integrals, evaluate the integral. ∫π2−π2sin2xdx∫−π2π2sin2xdx
Answer. Let I=∫π2−π2sin2xdx As sin2(−x)=(sin(−x))2=(−sinx)2=sin2x, therefore, sin2x is an even function. Let I=∫−π2π2sin2xdx As sin2(−x)=(sin(−x))2=(−sinx)2=sin2x, therefore, sin2x is an even function. It is known that if f(x) is an even function, then ∫−aaf(x)dx=2∫a0f(x)dx∫a−af(x)dx=2∫0af(x)dx I=2∫π20sin2xdx=2∫π201−cos2x2dx=∫π20(1−cos2x)dx=[x−sin2x2]π20=π2
Q12. By using the properties of definite integrals, evaluate the integral. ∫π0xdx1+sinx
Answer. I=∫π0xdx1+sinx.....(1)I=∫0πxdx1+sinx.....(1) ⇒I=∫π0(π−x)1+sin(π−x)dx(∫a0f(x)dx=∫a0f(a−x)dx)⇒I=∫0π(π−x)1+sin(π−x)dx(∫0af(x)dx=∫0af(a−x)dx) ⇒I=∫π0(π−x)1+sinxdx...(2) Adding (1) and (2), we obtain ⇒I=∫0π(π−x)1+sinxdx...(2) Adding (1) and (2), we obtain 2I=∫=0π1+sinxdx⇒2I=π∫π0(1−sinx)(1+sinx)(1−sinx)dx⇒2I=π∫=01−sinxcos2xdx2I=∫0=π1+sinxdx⇒2I=π∫0π(1−sinx)(1+sinx)(1−sinx)dx⇒2I=π∫0=1−sinxcos2xdx ⇒2I=π[tanx−secx]π0⇒2I=π[2]⇒I=π
Q13. By using the properties of definite integrals, evaluate the integral. ∫π2−π2sin7xdx
Answer. Let I=∫π2π2sin7xdx....(1)Let I=∫π2π2sin7xdx....(1) As sin7(−x)=(sin(−x))7=(−sinx)7=−sin7x, therefore, sin2xsin7(−x)=(sin(−x))7=(−sinx)7=−sin7x, therefore, sin2x is an odd function. It is known that, if f(x) is an odd function, then ∫a−af(x)dx=0∴I=∫π2π2sin7xdx=0
Q14. By using the properties of definite integrals, evaluate the integral. ∫2π0cos5xdx
Answer. Let I=∫2π0cos5xdx…(1)cos5(2π−x)=cos5x Let I=∫02πcos5xdx…(1)cos5(2π−x)=cos5x It is known that, ∫2a0f(x)dx=2∫a1f(x)dx, if f(2a−x)=f(x)=0 if f(2a−x)=−f(x)∫02af(x)dx=2∫1af(x)dx, if f(2a−x)=f(x)=0 if f(2a−x)=−f(x) ∴I=2∫π0cos5xdx∴I=2∫0πcos5xdx ⇒I=2(0)=0[cos5(π−x)=−cos5x]
Q15. By using the properties of definite integrals, evaluate the integral. ∫π20sinx−cosx1+sinxcosxdx∫0π2sinx−cosx1+sinxcosxdx
Answer. Let I=∫π20sinx−cosx1+sinxcosxdx....(1)Let I=∫0π2sinx−cosx1+sinxcosxdx....(1) ⇒I=∫π0sin(π2−x)−cos(π2−x)1+sin(π2−x)cos(π2−x)dx(∫a0f(x)dx=∫a0f(a−x)dx)⇒I=∫0πsin(π2−x)−cos(π2−x)1+sin(π2−x)cos(π2−x)dx(∫0af(x)dx=∫0af(a−x)dx) ⇒I=∫π20cosx−sinx1+sinxcosxdx....(2)⇒I=∫0π2cosx−sinx1+sinxcosxdx....(2) Adding (1) and (2), we obtain 2I=∫π2b01+sinxcosxdx⇒I=0
Q16. By using the properties of definite integrals, evaluate the integral. ∫π0log(1+cosx)dx∫0πlog(1+cosx)dx
Answer. I=∫π0log(1+cosx)dx.....(1)I=∫0πlog(1+cosx)dx.....(1) I=∫π0log(1+cosx)(∫01f(x)dx=∫01f(a−x)dx)I=∫0πlog(1+cosx)(∫10f(x)dx=∫10f(a−x)dx) ⇒I=∫π1log(1−cosx)dx....(2)⇒I=∫1πlog(1−cosx)dx....(2) Adding (1) and (2), we obtain 2I=∫π0{log(1+cosx)+log(1−cosx)}dx⇒2I=∫π0log(1−cos2x)dx⇒2I=∫π0logsin2xdx⇒2I=2∫π0logsinxdx Adding (1) and (2), we obtain 2I=∫0π{log(1+cosx)+log(1−cosx)}dx⇒2I=∫0πlog(1−cos2x)dx⇒2I=∫0πlogsin2xdx⇒2I=2∫0πlogsinxdx ⇒I=∫π0logsinxdxsin(π−x)=sinx.....(3)⇒I=∫0πlogsinxdxsin(π−x)=sinx.....(3) ∴I=2∫π20logsinxdx...(4)⇒I=2∫x0logsin(π2−x)dx=2∫π20logcosxdx....(5)∴I=2∫0π2logsinxdx...(4)⇒I=2∫0xlogsin(π2−x)dx=2∫0π2logcosxdx....(5) Adding (4) and (5), we obtain 2I=2∫π20(logsinx+logcosx)dx Adding (4) and (5), we obtain 2I=2∫0π2(logsinx+logcosx)dx ⇒I=∫x20(logsinx+logcosx+log2−log2)dx⇒I=∫0x2(logsinx+logcosx+log2−log2)dx ⇒I=∫π20(log2sinxcosx−log2)dx⇒I=∫π20logsin2xdx−∫π20log2dx⇒I=∫0π2(log2sinxcosx−log2)dx⇒I=∫0π2logsin2xdx−∫0π2log2dx Let 2x=t2dx=dt When x=0,t=0 and when x=π2,π=∴I=1π2∫π0logsintdt−log22log2 Let 2x=t2dx=dt When x=0,t=0 and when x=π2,π=∴I=1π2∫0πlogsintdt−log22log2 ⇒I=1π2I−12log2⇒I2=−π2log2⇒I=−πlog2
Q17. By using the properties of definite integrals, evaluate the integral. ∫a0√x√x+√a−xdx
Answer. Let I=∫00√x√x+√a−xdx....(1)I=∫00xx+a−xdx....(1) It is known that, (∫a0f(x)dx=∫a0f(a−x)dx)(∫0af(x)dx=∫0af(a−x)dx) I=∫a0√a−x√a−x+√xdx.....(2)I=∫0aa−xa−x+xdx.....(2) Adding (1) and (2), we obtain 2I=∫a0√x+√a−x√x+√a−xdx⇒2I=∫a01dx Adding (1) and (2), we obtain 2I=∫0ax+a−xx+a−xdx⇒2I=∫0a1dx ⇒2I=[x]a0⇒2I=a⇒I=a2
Q18. By using the properties of definite integrals, evaluate the integral. ∫40|x−1|dx
Answer. I=∫40|x−1|dxI=∫04|x−1|dx It can be seen that, (x − 1) ≤ 0 when 0 ≤ x ≤ 1 and (x − 1) ≥ 0 when 1 ≤ x ≤ 4 I=∫40|x−1|dx+∫4|x−1|dx(∫baf(x)=∫caf(x)+∫btf(x))I=∫04|x−1|dx+∫4|x−1|dx(∫abf(x)=∫acf(x)+∫tbf(x)) =∫10−(x−1)dx+∫10(x−1)dx=∫01−(x−1)dx+∫01(x−1)dx =[x−x22]10+[x22−x]41=[x−x22]01+[x22−x]14 =1−12+(4)22−4−12+1=1−12+(4)22−4−12+1 =1−12+8−4−12+1=5
Q19. By using the properties of definite integrals, evaluate the integral. Show that ∫a0f(x)g(x)dx=2∫a0f(x)dx∫0af(x)g(x)dx=2∫0af(x)dx, if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4
Answer. I=∫a0f(x)g(x)dx....(1)I=∫0af(x)g(x)dx....(1) ⇒I=∫01f(a−x)g(a−x)dx(∫01f(x)dx=∫00f(a−x)dx)⇒I=∫10f(a−x)g(a−x)dx(∫10f(x)dx=∫00f(a−x)dx) ⇒I=∫a0f(x)g(a−x)dx.....(2) Adding (1) and (2), we obtain ⇒I=∫0af(x)g(a−x)dx.....(2) Adding (1) and (2), we obtain 2I=∫a0{f(x)g(x)+f(x)g(a−x)}dx⇒2I=∫a0f(x){g(x)+g(a−x)}dx2I=∫0a{f(x)g(x)+f(x)g(a−x)}dx⇒2I=∫0af(x){g(x)+g(a−x)}dx ⇒2I=∫π0f(x)×4dx[g(x)+g(a−x)=4]⇒2I=∫0πf(x)×4dx[g(x)+g(a−x)=4] ⇒I=2∫a0f(x)dx
Q20. Choose the correct answer The value of ∫π2−π2(x3+xcosx+tan5x+1)dx∫−π2π2(x3+xcosx+tan5x+1)dxis (A) 0 (B) 2 (C) π (D) 1
Answer. Let I=∫π2π2(x3+xcosx+tan5x+1)dx⇒I=∫π2π2x3dx+∫π2π2cosx+∫π22tan5xdx+∫π221⋅dx Let I=∫π2π2(x3+xcosx+tan5x+1)dx⇒I=∫π2π2x3dx+∫π2π2cosx+∫2π2tan5xdx+∫2π21⋅dx It is known that if f(x) is an even function, then ∫a−af(x)dx=2∫a0f(x)dx∫−aaf(x)dx=2∫0af(x)dx I=0+0+0+2∫π201⋅dx=2[x]π20=2π2π=I=0+0+0+2∫0π21⋅dx=2[x]0π2=2π2π= Hence, the correct Answer is C.
Q21. Choose the correct answer The value of ∫π20log(4+3sinx4+3cosx)dx∫0π2log(4+3sinx4+3cosx)dxis (A) 2 (B) 34 (C) 0 (D) −2 (A) 2 (B) 34 (C) 0 (D) −2
Answer. Let I=∫20log(4+3sinx4+3cosx)dxI=∫02log(4+3sinx4+3cosx)dx.....(1) ⇒I=∫π0log[4+3sin(π2−x)4+3cos(π2−x)]dx(∫a0f(x)dx=∫a0f(a−x)dx)⇒I=∫0πlog[4+3sin(π2−x)4+3cos(π2−x)]dx(∫0af(x)dx=∫0af(a−x)dx) ⇒I=∫π20log(4+3cosx4+3sinx)dx⇒I=∫0π2log(4+3cosx4+3sinx)dx.....(2) Adding (1) and (2), we obtain 2I=∫π20{log(4+3sinx4+3cosx)+log(4+3cosx4+3sinx)}dx⇒2I=∫π20log(4+3sinx4+3cosx×4+3cosx4+3sinx)dx Adding (1) and (2), we obtain 2I=∫0π2{log(4+3sinx4+3cosx)+log(4+3cosx4+3sinx)}dx⇒2I=∫0π2log(4+3sinx4+3cosx×4+3cosx4+3sinx)dx ⇒2I=∫π20log1dx⇒2I=∫π200dx⇒I=0⇒2I=∫0π2log1dx⇒2I=∫0π20dx⇒I=0 Hence, the correct Answer is C
Chapter-7 (integrals)