NCERT Solutions Class 12 Maths Chapter-7 (Integrals)Exercise 7.10
NCERT Solutions Class 12 Maths from class
12th Students will get the answers of
Chapter-7 (Integrals)Exercise 7.10 This chapter will help you to learn the basics and you should expect at least one question in your exam from this chapter.
We have given the answers of all the questions of
NCERT Board Mathematics Textbook in very easy language, which will be very easy for the students to understand and remember so that you can pass with good marks in your examination.
Exercise 7.10
Q1. Evaluate the definite integral : ∫10xx2+1dx using substitution
Answer. ∫10xx2+1dx Let x2+1=t⇒2xdx=dt when x=0,t=1 and when x=1,t=2∴∫10xx2+1dx=12∫21dtt =12[log|t]21=12[log2−log1]=12log2
Q2. Evaluate the definite integral : ∫π0√sinϕcos5ϕdϕ using substitution
Answer. Let I=∫π20√sinϕcos5ϕdϕ=∫πb√sinϕcos4ϕcosϕdϕ Also, let sinϕ=t⇒cosϕdϕ=dt When ϕ=0,t=0 and when ϕ=π2,t=1∴I=∫10√t(1−t2)2dt=∫10t12(1+t4−2t2)dt =∫10[t12+t92−2t52]dt=[t3232+t112112−2t7272]10 =23+211−47=154+42−132231=64231
Q3. Evaluate the definite integral : ∫10sin−1(2x1+x2)dx using substitution
Answer. Let I=∫10sin−1(2x1+x2)dx Also, let x=tanθdx=sec2θdθ when x=0,θ=0 and when x=1,θ=π4 I=∫π40sin−1(2tanθ1+tan2θ)sec2θdθ =∫π40sin−1(sin2θ)sec2θdθ=∫π402θ⋅sec2θdθ=2∫π40θ⋅sec2θdθ Taking θ as first function and sec2θ as second function and integrating by parts, we obtain I=2[θ∫θ∫sec2θdθ−∫{(ddxθ)∫sec2θdθ}dθ]π40 I=2[θ∫θ∫sec2θdθ−∫{(ddxθ)∫sec2θdθ}dθ]x40=2[θtanθ−∫tanθdθ]π40=2[θtanθ+logcosθ]π40 =2[π4tanπ4+logcosπ4|−log|cos0|]=2[π4+log(1√2)−log1]=2[π4−12log2]=π2−log2
Q4. Evaluate the definite integral : ∫20x√x+2( Put x+2=t2) using substitution
Answer. ∫20x√x+2dx Let x+2=t2dx=2tdt when x=0,t=√2 and when x=2,t=2 ∴∫20x√x+2dx=∫2√2(t2−2)√t22tdt=2∫2√2(t2−2)2dt=2∫2√2(t4−2t2)dt=2[t55−2t33]2√2 =2[325−163−4√25+4√23]=2[96−80−12√2+20√215]=2[16+8√215]=16(2+√2)15=16(2+√2)15=16√2(√2+1)15
Q5. Evaluate the definite integral : ∫π20sinx1+cos2xdx using substitution
Answer. ∫π20sinx1+cos2xdx Let cosx=t−sinxdx=dt when x=0,t=1 and when x=π2,t=0 ⇒∫π20sinx1+cos2xdx=−∫dt1+t2=−[tan−1t]01=−[tan−10−tan−11]=−[−π4]=π4
Q6. Evaluate the definite integral : ∫20dxx+4−x2 using substitution
Answer. ∫20dxx+4−x2=∫20dx−(x2−x−4)=∫20dx−(x2−x+14−14−4) =∫20dx−[(x−12)2−174]=∫20dx(√172)2−(x−12)2 Let x−12=tdx=dt When x=0,t=−12 and when x=2,t=32∴∫20dx(√172)2−(x−12)2=∫32−12dt(√172)2−t2 =[12(√172)log√172+t√172−t]3212 =1√17⎡⎢⎣log√172+32√172−32−log√172−12log√172+12⎤⎥⎦=1√17[log√17+3√17−3−log√17−1√17+1] =1√17log√17+3√17−3×√17+1√17−1=1√17log[17+3+4√1717+3−4√17] =1√17log[20+4√1720−4√17]=1√17log(5+√175−√17) =1√17log[(5+√17)(5+√17)25−17]=1√17log[25+17+10√178]⎤⎥
⎥
⎥⎦ =1√17log(42+10√178)=1√17log(21+5√174)
Q7. Evaluate the definite integral : ∫1−1dxx2+2x+5 using substitution
Answer. ∫1−1dxx2+2x+5=∫1−1dx(x2+2x+1)+4=∫2−1dx(x+1)2+(2)2 Let x + 1 = t ⇒ dx = dt When x = −1, t = 0 and when x = 1, t = 2 ∴∫4−1dx(x+1)2+(2)2=∫23dtt2+22 =[12tan−1t2]20=12tan−11−12tan−10=12(π4)=π8
Q8. Evaluate the definite integral : ∫21(1x−12x2)e2xdx using substitution
Answer. ∫21(1x−12x2)e2xdx Let 2x=t2dx=dt When x=1,t=2 and when x=2,t=4 ∴∫21(1x−12x2)e2xdx=12∫12(2t−2t2)etdt=∫42(1t−1t2)etdt Let 1t=f(t) Then, f′(t)=−1t2 ⇒∫12(1t−1t2)etdt=∫t2et[f(t)+ft(t)]dt=[etf(t)]42 =[et⋅2t]42=[ett]42=e44−e22=e2(e2−2)4
Q9. The value of the integral ∫13(x−x3)13x4dx is (A) 6 (B) 0 (C) 3 (D) 4
Answer. Let I=∫(x−x3)1313dx Also, let x=sinθ⇒dx=cosθdθ When x=13,θ=sin−1(13) and when x=1,θ=π2 ⇒I=∫π2lim−1(13)(sinθ−sin3θ)13sin4θcosθdθ =∫x2−sin−1(13)(sinθ)13(1−sin2θ)13sin4θcosθdθ =∫π2−π(sinθ)13(cosθ)23sin4θcosθdθ =∫π2−ln−1(13)(sinθ)13(cosθ)23sin2θsin2θcosθdθ =∫π2lin−1(13)(cosθ)53(sinθ)53csc2θdθ =∫π2ln−1(13)(cosθ)53(sinθ)53csc2θdθ =∫x2−ln−1(13)(cotθ)53csc2θdθ cotθ=t−csc2θdθ=dt When θ=sin−1(13),t=2√2 and when θ=π2,t=0 ∴I=−∫0√2(t)53dt=−[38(t)83]02√2=−38[(t)83]92√2=−38[−(2√2)83] =38[(√8)83]=38[(8)43]=38[16]=3×2=6 Hence, the correct Answer is A.
Q10. If f(x)=∫π0tsintdt, then f′(x) is A. cosx+xsinx B. xsinx C. xcosx D. sinx+xcosxsinx+xcosx
Answer. f(x)=∫x0tsintdt Integrating by parts, we obtain f(x)=t∫πbsintdt−∫r0{(ddtt)∫sintdt}dt=[t(−cost)]x0−∫x0(−cost)dt=[−tcost+sint]x0=−xcosx+sinx ⇒f′(x)=−[{x(−sinx)}+cosx]+cosx=xsinx−cosx+cosx=xsinx Hence, the correct answer is B.
Chapter-7 (integrals)