NCERT Solutions Class 12 maths Chapter-4 (Determinants)Exercise 4.5

NCERT Solutions Class 12 maths Chapter-4 (Determinants)Exercise 4.5

NCERT Solutions Class 12 Maths from class 12th Students will get the answers of Chapter-4 (Determinants)Exercise 4.5 This chapter will help you to learn the basics and you should expect at least one question in your exam from this chapter.
We have given the answers of all the questions of  NCERT Board Mathematics Textbook in very easy language, which will be very easy for the students to understand and remember so that you can pass with good marks in your examination.
Solutions Class 12 maths Chapter-4 (Determinants)Exercise 4.5

Exercise 4.5

Find adjoint of each of the matrices in Exercises 1 and 2.

Question 1Solutions Class 12 maths Chapter-4 (Determinants)

Solution:

A = Solutions Class 12 maths Chapter-4 (Determinants)

A11 = 4; A12 = -3; A21 = -2; A22 = 1

adj A = Solutions Class 12 maths Chapter-4 (Determinants)

adj A = Solutions Class 12 maths Chapter-4 (Determinants)

Question 2Solutions Class 12 maths Chapter-4 (Determinants)

Solution:

A = Solutions Class 12 maths Chapter-4 (Determinants)

A11 = Solutions Class 12 maths Chapter-4 (Determinants)

A11 = 3 – 0 = 3

A12 = Solutions Class 12 maths Chapter-4 (Determinants)

A12 = -(2 + 10) = -12

A13 = Solutions Class 12 maths Chapter-4 (Determinants)

A13 = 0 + 6 = 6

A21 = Solutions Class 12 maths Chapter-4 (Determinants)

A21 = -(-1 – 0) = 1

A22 = Solutions Class 12 maths Chapter-4 (Determinants)

A22 = 1 + 4 = 5

A23 = Solutions Class 12 maths Chapter-4 (Determinants)

A23 = -(0 – 2) = 2

A31 = Solutions Class 12 maths Chapter-4 (Determinants)

A31 = -5 – 6 = -11

A32 = Solutions Class 12 maths Chapter-4 (Determinants)

A32 = -(5 – 4) = -1

A33 = Solutions Class 12 maths Chapter-4 (Determinants)

A33 = 3 + 2 = 5

adj A = \begin{bmatrix} A_{11} & A_{21} &A_{31} \\ A_{12}&A_{22} &A_{32} \\ A_{13}& A_{23} &A_{33} \end{bmatrix}

adj A = \begin{bmatrix} 3& 1 &-11 \\ -12&5  &-1 \\ 6& 2 &5 \end{bmatrix}

Verify A(adj A) = (adj A)A = |A| I in exercises 3 and 4.

Question 3Solutions Class 12 maths Chapter-4 (Determinants)

Solution:


|A| = -12 -(-12) 

|A| = -12 + 12 = 0

so, |A|*I = 0 * Solutions Class 12 maths Chapter-4 (Determinants)

|A|*I =Solutions Class 12 maths Chapter-4 (Determinants) ……… (1)

Now, for adjoint of A

A11 = -6

A12 = 4

A21 = -3

A22 = 2

adj A = Solutions Class 12 maths Chapter-4 (Determinants)

adj A = Solutions Class 12 maths Chapter-4 (Determinants)

Now, A(adj A) = Solutions Class 12 maths Chapter-4 (Determinants)

A(adj A) = Solutions Class 12 maths Chapter-4 (Determinants)

Solutions Class 12 maths Chapter-4 (Determinants)

A(adj A) = Solutions Class 12 maths Chapter-4 (Determinants)…………(2)

Now, (adj A)A = Solutions Class 12 maths Chapter-4 (Determinants)

(adj A)A = Solutions Class 12 maths Chapter-4 (Determinants)

(adj A)A = Solutions Class 12 maths Chapter-4 (Determinants) …………….(3)

From eq(1), (2), and (3), you can see that A(adj A) = (adj A)A = |A|I

Question 4Solutions Class 12 maths Chapter-4 (Determinants)

Solution:

A = Solutions Class 12 maths Chapter-4 (Determinants)

|A| = 1(0 – 0) + 1(9 + 2) + 2(0 – 0)

|A| = 11

|A| * I = Solutions Class 12 maths Chapter-4 (Determinants)

|A| * I = Solutions Class 12 maths Chapter-4 (Determinants)

Now, for adjoint of A

A11 = 0

A12 = -(9 + 2) = -11

A13 = 0

A21 = -(-3 – 0) = 3

A22 = 3 – 2 = 1

A23 = -(0 + 1) = -1

A31 = 2 – 0 = 2

A32 = -(-2 – 6) = 8

A33 = 0 + 3 = 3

adj A = Solutions Class 12 maths Chapter-4 (Determinants)

Now,

A(adjA) = Solutions Class 12 maths Chapter-4 (Determinants)

A(adj A) = Solutions Class 12 maths Chapter-4 (Determinants)

A(adj A) = Solutions Class 12 maths Chapter-4 (Determinants)

Also,

(adj A).A = Solutions Class 12 maths Chapter-4 (Determinants)

(adj A).A = Solutions Class 12 maths Chapter-4 (Determinants)

(adj A).A = Solutions Class 12 maths Chapter-4 (Determinants)

From above, you can see,

A(adj A) = (adj A)A = I

Find the inverse of each of the matrices (if it exists) given in Exercises 5 to 11.

Question 5Solutions Class 12 maths Chapter-4 (Determinants)

Solution:

|A| = 6 – (-8) = 14

|A| ≠ 0, So inverse exists.

A11 = 3

A12 = 2

A21 = -4

A22 = 2

adj A = Solutions Class 12 maths Chapter-4 (Determinants)

A-1 = (adj A)/|A|

A-1 = Solutions Class 12 maths Chapter-4 (Determinants)

Question Solutions Class 12 maths Chapter-4 (Determinants)

Solution:

A = Solutions Class 12 maths Chapter-4 (Determinants)

|A| = -2 + 15 = 13 ≠ 0

Hence, inverse exists.

A11 = 2

A12 = 3

A21 = -5

A22 = -1

adj A = Solutions Class 12 maths Chapter-4 (Determinants)

A-1 = (adj A)/|A|

A-1 = Solutions Class 12 maths Chapter-4 (Determinants)

Question 7Solutions Class 12 maths Chapter-4 (Determinants)

Solution:

A = Solutions Class 12 maths Chapter-4 (Determinants)

|A| = 1(10 – 0) – 2(0 – 0) + 3(0 – 0) = 10

For adj A

A11 = 10 – 0 = 0

A12 = -(0 – 0) = 0

A13 = 0 – 0 = 0

A21 = -(10 – 0) = -10

A22 = 5 – 0 = 5

A23 = -(0 – 0) = 0

A31 = 8 – 6 = 2

A32 = -(4 – 0) = -4

A33 = 2 – 0 = 2

adj A = Solutions Class 12 maths Chapter-4 (Determinants)

A-1 = (adj A)/|A|

A-1 = Solutions Class 12 maths Chapter-4 (Determinants)

Question 8Solutions Class 12 maths Chapter-4 (Determinants)

Solution:

A = Solutions Class 12 maths Chapter-4 (Determinants)

|A| = 1(-3 – 0) – 0 + 0 = -3 ≠ 0

Hence, inverse exists.

For adj A

A11 = -3 – 0 = -3

A12 = -(-3 – 0) = 3

A13 = 6 – 15 = -9

A21 = -(0 – 0) = 0

A22 = -1 – 0 = -1

A23 = -(2 – 0) = -2

A31 = 0 – 0 = 0 

A32 = -(0 – 0) = 0

A33 = 3 – 0 = 3

adj A = Solutions Class 12 maths Chapter-4 (Determinants)

A-1 = (adj A)/|A|

A-1 = Solutions Class 12 maths Chapter-4 (Determinants)

Question 9Solutions Class 12 maths Chapter-4 (Determinants)

 Solution:

A = Solutions Class 12 maths Chapter-4 (Determinants)

|A| = 2(-1 – 0) – 1(4 – 0) + 3(8 – 7) = -3 ≠ 0

Hence, inverse exists.

For adj A

A11 = -1 – 0 = -1 

A12 = -(4 – 0) = -4

A13 = 8 – 7 = 1

A21 = -(1 – 6) = 5

A22 = 2 + 21 = 23

A23 = -(4 + 7) = -11

A31 = 0 + 3 = 3

A32 = -(0 – 12) = 12

A33 = -2 – 4 = -6

adj A = Solutions Class 12 maths Chapter-4 (Determinants)

A-1 = (adj A)/|A|

A-1 = Solutions Class 12 maths Chapter-4 (Determinants)

Question 10Solutions Class 12 maths Chapter-4 (Determinants)

Solution:

A = Solutions Class 12 maths Chapter-4 (Determinants)

|A| = 1(8 – 6) – 0 + 3(3 – 4) = -1

Now for adj A

A11 = 8 – 6 =2 

A12 = -(0 + 9) = -9

A13 = 0 – 6 = -6

A21 = -(-4 + 4) =0

A22 = 4 – 6 = -2

A23 = -(-2 + 3) = -1

A31 = 3 – 4 = -1

A32 = -(-3 – 0) = 3

A33 = 2 – 0 = 2

adj A = Solutions Class 12 maths Chapter-4 (Determinants)

A-1 = (adj A)/|A|

A-1 = Solutions Class 12 maths Chapter-4 (Determinants)

A-1 = Solutions Class 12 maths Chapter-4 (Determinants)

Question 11Solutions Class 12 maths Chapter-4 (Determinants)

 Solution:

A = Solutions Class 12 maths Chapter-4 (Determinants)

|A| = 1(-cos2α – sin2α) = -1

Now,

A11 = -cos2α – sin2α = -1

A12 = 0

A13 = 0

A21 = 0

A22 = -cosα

A23 = -sinα

A31 = 0

A32 = -sinα

A33 = cosα

adj A = Solutions Class 12 maths Chapter-4 (Determinants)

A-1 = (adj A)/|A|

A-1 = Solutions Class 12 maths Chapter-4 (Determinants)

A-1 = Solutions Class 12 maths Chapter-4 (Determinants)

Question 12. Let A = Solutions Class 12 maths Chapter-4 (Determinants) and B = Solutions Class 12 maths Chapter-4 (Determinants), verify that (AB) – 1 = B – 1– 1 

Solution: 

A = Solutions Class 12 maths Chapter-4 (Determinants)

|A| = 15 – 14 = 1

A11 = 5

A12 = -2

A21 = -7

A22 = 3

A-1 = (adj A)/|A|

A-1 = Solutions Class 12 maths Chapter-4 (Determinants)

B = Solutions Class 12 maths Chapter-4 (Determinants)

|B| = 54 – 56 = -2

adj B = Solutions Class 12 maths Chapter-4 (Determinants)

B-1 = (adj B)/|B|

B-1 = Solutions Class 12 maths Chapter-4 (Determinants)

B-1 = Solutions Class 12 maths Chapter-4 (Determinants)

Now,

B-1A-1 = Solutions Class 12 maths Chapter-4 (Determinants)

B-1A-1 = Solutions Class 12 maths Chapter-4 (Determinants)

B-1A-1 = Solutions Class 12 maths Chapter-4 (Determinants)

Now, AB = Solutions Class 12 maths Chapter-4 (Determinants)

AB = Solutions Class 12 maths Chapter-4 (Determinants)

AB = Solutions Class 12 maths Chapter-4 (Determinants)

|AB| = 67 * 61 – 87 * 47 = -2

adj (AB) = Solutions Class 12 maths Chapter-4 (Determinants)

(AB)-1 = (adj AB)/|AB|

(AB)-1 = Solutions Class 12 maths Chapter-4 (Determinants)

(AB)-1Solutions Class 12 maths Chapter-4 (Determinants)

From above, you can see that (AB)-1 = B-1A-1.

Hence, it is proved.

Question 13.  A = Solutions Class 12 maths Chapter-4 (Determinants), show that A– 5A + 7I = O. Hence find A-1.

Solution:

A = Solutions Class 12 maths Chapter-4 (Determinants)

A2 = Solutions Class 12 maths Chapter-4 (Determinants)

A2 = Solutions Class 12 maths Chapter-4 (Determinants)

A2 = Solutions Class 12 maths Chapter-4 (Determinants)

So, A2 – 5A + 7I

Solutions Class 12 maths Chapter-4 (Determinants)– 5Solutions Class 12 maths Chapter-4 (Determinants)+ 7Solutions Class 12 maths Chapter-4 (Determinants)

Solutions Class 12 maths Chapter-4 (Determinants) – Solutions Class 12 maths Chapter-4 (Determinants)Solutions Class 12 maths Chapter-4 (Determinants)

Solutions Class 12 maths Chapter-4 (Determinants)

= O

Hence, A2 – 5A + 7I = O

It can be written as 

A.A – 5A = -7I

Multiplying by A-1 in both sides

A.A(A-1) – 5AA-1 = 7IA-1

A(AA-1) – 5I = -7A-1

AI – 5I = -7A-1

A-1 = -(A – 5I)/7

A-1 =1/7(Solutions Class 12 maths Chapter-4 (Determinants) – Solutions Class 12 maths Chapter-4 (Determinants))

A-1 = Solutions Class 12 maths Chapter-4 (Determinants)

Question 14. For the matrix A =Solutions Class 12 maths Chapter-4 (Determinants),find the numbers a and b such that A2 + aA + bI = O.

Solution:

A = Solutions Class 12 maths Chapter-4 (Determinants)

A2 = Solutions Class 12 maths Chapter-4 (Determinants)

A2 = Solutions Class 12 maths Chapter-4 (Determinants)

A2 = Solutions Class 12 maths Chapter-4 (Determinants)

Now,

A2 – aA + bI = O

Multiplying by A-1 in both sides

(AA)A-1 + aAA-1 + bIA-1 = O

A(AA-1) + aI + b(IA-1) = O

AI + aI + bA-1 = O

A + aI = -bA-1

A-1 = -(A + aI)/b

Now,

A-1 = (adj A)/|A|

A-1 = \begin{bmatrix} 1 &-2 \\ -1& 3 \end{bmatrix}

Now, 

\begin{bmatrix} 1 &-2 \\ -1& 3 \end{bmatrix} = -1/b[\begin{bmatrix} 3 &2 \\ 1& 1 \end{bmatrix} + \begin{bmatrix} a &0 \\ 0& a \end{bmatrix}]

= -1/b\begin{bmatrix} 3+a &2 \\ 1& 1+a \end{bmatrix}

\begin{bmatrix} \frac{-3-a}{b} &\frac{-2}{b} \\ \frac{-1}{b}& \frac{-1-a}{b} \end{bmatrix}

On comparing elements you will get

-1/b = -1

b = 1

(-3 – a)/b = 1

-3 – a = 1

a = -4

Hence, a = -4 and b = 1

Question 15. A = Solutions Class 12 maths Chapter-4 (Determinants), show that A3 – 6A2 + 5A + 11I = O. Hence find A-1

Solution:

A = \begin{bmatrix} 1& 1  &1 \\ 1 & 2  &-3  \\ 2 & -1 & 3 \end{bmatrix}

A2 = \begin{bmatrix} 1& 1  &1 \\ 1 & 2  &-3  \\ 2 & -1 & 3 \end{bmatrix} \begin{bmatrix} 1& 1  &1 \\ 1 & 2  &-3  \\ 2 & -1 & 3 \end{bmatrix}

A2 = \begin{bmatrix} 1+1+2& 1+2-1  &1-3+3 \\ 1+2-6 & 1+4+3  &1-6-9  \\ 2-1+6 & 2-2-3 & 2+3+9 \end{bmatrix}

A2 = \begin{bmatrix} 4& 2  &1 \\ -3 & 8  &-14  \\ 7 & -3 & 14 \end{bmatrix}

A3 = A2.A

A3 = \begin{bmatrix} 4& 2  &1 \\ -3 & 8  &-14  \\ 7 & -3 & 14 \end{bmatrix} \begin{bmatrix} 1& 1  &1 \\ 1 &2  &-3  \\ 2 &-1 & 3 \end{bmatrix}

A3 = \begin{bmatrix} 4+2+2& 4+4-1  &4-6+3 \\ -3+8-28 &-3+16+14 &-3-24-42  \\ 7-3+28 &7-6-14 & 7+9+42 \end{bmatrix}

A3 = \begin{bmatrix} 8& 7  &1 \\ -23 &27 &-69  \\ 32&-13 & 58 \end{bmatrix}

A3 – 6A2 + 5A + 11I

\begin{bmatrix} 8& 7  &1 \\ -23 &27 &-69  \\ 32&-13 & 58 \end{bmatrix}– 6\begin{bmatrix} 4& 2  &1 \\ -3 & 8  &-14  \\ 7 & -3 & 14 \end{bmatrix}+ 5\begin{bmatrix} 1& 1  &1 \\ 1 & 2  &-3  \\ 2 & -1 & 3 \end{bmatrix} + 11\begin{bmatrix} 1& 0  &0 \\ 0 & 1  &0  \\ 0 & 0 & 1 \end{bmatrix}

\begin{bmatrix} 8& 7  &1 \\ -23 &27 &-69  \\ 32&-13 & 58 \end{bmatrix}– \begin{bmatrix} 24& 12  &6 \\ -18&48 &-84  \\ 42&-18 & 84 \end{bmatrix} + \begin{bmatrix} 5& 5  &5 \\ 5&10 &-15  \\ 10&-5 & 15 \end{bmatrix} + \begin{bmatrix} 11& 0  &0 \\ 0&11 &0  \\ 0&0 & 11 \end{bmatrix}

\begin{bmatrix} 0& 0  &0 \\ 0&0 &0  \\ 0&0 &0 \end{bmatrix}

= O

Hence, A3 – 6A2 + 5A + 11I = O

Now,

A3 – 6A2 + 5A + 11I = O

(AAA)A-1 – 6(AA)A-1 + 5(AA-1) + 11IA-1 = O

AA(AA-1) – 6A(AA-1) + 5(AA-1) = -11(IA-1)

A2 – 6A + 5I = -11 A-1

A-1 = -1/11(A2 – 6A + 5I) ………….(1)

Now, A– 6A + 5I

=\begin{bmatrix} 4& 2  &1 \\ -3 & 8  &-14  \\ 7 & -3 & 14 \end{bmatrix} – 6\begin{bmatrix} 1& 1  &1 \\ 1 & 2  &-3  \\ 2 & -1 & 3 \end{bmatrix} + 5\begin{bmatrix} 1& 0  &0 \\ 0 & 1  &0  \\ 0 & 0 & 1 \end{bmatrix}

=\begin{bmatrix} 4& 2  &1 \\ -3 & 8  &-14  \\ 7 & -3 & 14 \end{bmatrix} – \begin{bmatrix} 6& 6  &6 \\ 6&12 &-18  \\ 12&-6 & 18 \end{bmatrix} + \begin{bmatrix} 5& 0 &0 \\ 0&5 &0  \\ 0&0 &5 \end{bmatrix}

\begin{bmatrix} 3& -4 &-5 \\ -9&1 &4  \\ -5&3 &1 \end{bmatrix}

From eq(1) you have 

A-1 = -1/11 \begin{bmatrix} 3& -4 &-5 \\ -9&1 &4  \\ -5&3 &1 \end{bmatrix}

Question 16. A Solutions Class 12 maths Chapter-4 (Determinants) , verify that A3 – 6A2 + 9A – 4I = O and hence fin A-1.

Solution:

A = \begin{bmatrix} 2& -1 &1 \\ -1&2 &-1  \\ 1&-1 &2 \end{bmatrix}

A2 = \begin{bmatrix} 2& -1 &1 \\ -1&2 &-1  \\ 1&-1 &2 \end{bmatrix} \begin{bmatrix} 2& -1 &1 \\ -1&2 &-1  \\ 1&-1 &2 \end{bmatrix}

A2 = \begin{bmatrix} 4+1+1& -2-2-1 &2+1+2 \\ -2-2-1&1+4+1 &-1-2-2  \\ 2+1+2&-1-2-2 &1+1+4 \end{bmatrix}

A2\begin{bmatrix} 6& -5 &5 \\ -5&6 &-5  \\ 5&-5 &6 \end{bmatrix}

A3 = A2.A

A3 = \begin{bmatrix} 6& -5 &5 \\ -5&6 &-5  \\ 5&-5 &6 \end{bmatrix} \begin{bmatrix} 2& -1 &1 \\ -1&2 &-1  \\ 1&-1 &2 \end{bmatrix}

A3 = \begin{bmatrix} 12+5+5& -6-10-5 &6+5+10 \\ -10-6-5&5+12+5 &-5-6-10  \\ 10+5+6&-5-10-6 &5+5+12 \end{bmatrix}

A3 = \begin{bmatrix} 22& -21 &21 \\ -21&22 &-21  \\ 21&-21 &22 \end{bmatrix}

Now,

A– 6A+ 9A – 4I

\begin{bmatrix} 22& -21 &21 \\ -21&22 &-21  \\ 21&-21 &22 \end{bmatrix} – 6\begin{bmatrix} 6& -5 &5 \\ -5&6 &-5  \\ 5&-5 &6 \end{bmatrix} + 9\begin{bmatrix} 2& -1 &1 \\ -1&2 &-1  \\ 1&-1 &2 \end{bmatrix}– 4\begin{bmatrix} 1& 0 &0 \\ 0&1 &0  \\ 0&0 &1 \end{bmatrix}

=\begin{bmatrix} 22& -21 &21 \\ -21&22 &-21  \\ 21&-21 &22 \end{bmatrix} – \begin{bmatrix} 36& -30 &30 \\ -30&36 &-30  \\ 30&-30 &36 \end{bmatrix} + \begin{bmatrix} 18& -9 &9 \\ -9&18 &-9  \\ 9&-9 &18 \end{bmatrix}– \begin{bmatrix} 4& 0 &0 \\ 0&4 &0  \\ 0&0 &4 \end{bmatrix}

=\begin{bmatrix} 40& -30 &30 \\ -30&40 &-30  \\ 30&-30 &40 \end{bmatrix} – \begin{bmatrix} 40& -30 &30 \\ -30&40 &-30  \\ 30&-30 &40 \end{bmatrix}

\begin{bmatrix} 0& 0 &0 \\ 0&0 &0  \\ 0&0 &0 \end{bmatrix}

= O

So, A3 – 6A2 + 9A – 4I = O

Now,

A3 – 6A2 + 9A – 4I = O

Multiplying by A-1 in both sides

(AAA)A-1 – 6(AA)A-1 + 9AA-1 – 4IA-1 = O

AA(AA-1) – 6A(AA-1) + 9(AA-1) = 4(IA-1)

AAI – 6AI +9I = 4A-1

A2 – 6A + 9I = 4A-1

A-1 = 1/4(A2 – 6A + 9I) ……….(1)

A2 – 6A + 9I

\begin{bmatrix} 6& -5 &5 \\ -5&6 &-5  \\ 5&-5 &6 \end{bmatrix} – 6\begin{bmatrix} 2& -1 &1 \\ -1&2 &-1  \\ 1&-1 &2 \end{bmatrix} + 9\begin{bmatrix} 1& 0 &0 \\ 0&1 &0  \\ 0&0 &1 \end{bmatrix}

\begin{bmatrix} 3& 1 &-1 \\ 1&3 &1  \\ -1&1 &3 \end{bmatrix}

From eq(1), you have 

A-1 = \frac{1}{4}\begin{bmatrix} 3& 1 &-1 \\ 1&3 &1  \\ -1&1 &3 \end{bmatrix}

Question 17. Let A be a non-singular matrix of order 3 * 3. Then |adj A| is equal to 

(A) |A|      (B) |A|2      (C) |A|3      (D) 3|A|

Solution:

You know,

(adj A)A = |A|I

(adj A)A = \begin{bmatrix} |A| &0  &0 \\ 0 & |A| &0 \\ 0 &0  &|A| \end{bmatrix}

|(adj A)A| = \begin{vmatrix} |A| &0  &0 \\ 0 & |A| &0\\ 0 &0  &|A| \end{vmatrix}

|(adj A)A| = |A|3\begin{vmatrix} 1 &0  &0 \\ 0 & 1 &0\\ 0 &0  &1 \end{vmatrix}

|(adj A)A| = |A|I

|adj A| = |A|3

Hence, option B is correct.

Question 18. If A is an invertible matrix of order 2, then det(A-1) is equal to 

(A) det(A)      (B) 1/(det A)      (C) 1      (D) 0

Solution:

Since A is an invertible matrix then A-1 exists.

And A-1 = (adj A)/|A|

Suppose a 2 order matrix is A = \begin{bmatrix} a &b   \\ c &d \end{bmatrix}

Then |A| = ad – bc

and adj A = \begin{bmatrix} d &-b   \\ -c &a  \end{bmatrix}

A-1 = (adj A)/|A|

A-1 = \frac{1}{|A|}\begin{bmatrix} d &-b   \\ -c &a \end{bmatrix}

A-1 = \begin{bmatrix} \frac{d}{|A|} &\frac{-b}{|A|}  \\ \frac{c}{|A|}&\frac{a}{|A|}       \end{bmatrix}

|A-1| = \begin{vmatrix} \frac{d}{|A|} &\frac{-b}{|A|} \\ \frac{-c}{|A|} & \frac{a}{|A|} \end{vmatrix}

|A-1| = \frac{1}{|A|^{2}}\begin{vmatrix} d &-b \\ -c &a \end{vmatrix}

|A-1| = (ad – bc)/|A|2

|A-1| = |A|/|A|2

|A-1| = 1/|A|

det(A-1) = 1/(det A)

Hence, option B is correct.

Chapter-4 (Determinants)