NCERT Solutions Class 12 Maths Chapter-11 (Three Dimensional Geometry)Exercise 11.2

NCERT Solutions Class 12 Maths Chapter-11 (Three Dimensional Geometry)Exercise 11.2

NCERT Solutions Class 12 Maths from class 12th Students will get the answers of Chapter-11 (Three Dimensional Geometry)Exercise 11.2 This chapter will help you to learn the basics and you should expect at least one question in your exam from this chapter.
We have given the answers of all the questions of NCERT Board Mathematics Textbook in very easy language, which will be very easy for the students to understand and remember so that you can pass with good marks in your examination.
Solutions Class 12 Maths Chapter-11 (Three Dimensional Geometry)Exercise 11.2

Exercise 11.2

Q1. Show that the three lines with direction cosines 1213,313,413;413,1213,313;313,413,1213 are mutually perpendicular.

Answer.  Two lines with direction cosines, l1,m1,n1 and l2,m2,n2, are perpendicular to each  other, if I1I2+m1m2+n1n2=0 (i) For the lines with direction cosines, 1213,313,413 and 413,1213,313, we obtain l1l2+m1m2+n1n2=1213×413+(313)×1213+(413)×313=481693616912169=0 Therefore, the lines are perpendicular. (ii) For the lines with direction cosines, 413,1213,313 and 313,413,1213, we obtain l1l2+m1m2+n1n2=413×313+1213×(413)+313×1213=1216948169+36169=0 Therefore, the lines are perpendicular. Thus, all the lines are mutually perpendicular.

Q2. Show that the line through the points (1, – 1, 2), (3, 4, – 2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).

Answer.  Let AB be the line joining the points, (1,1,2) and (3,4,2), and CD be the line  joining the points, (0,3,2) and (3,5,6) .  The direction ratios, a1,b1,c1, of AB are (31),(4(1)), and (22) i.e.t 2,5, and 4 .   The direction ratios, a2,b2,c2 of co are (30),(53), and (62) i.e., 3,2, and 4. AB and CD will be perpendicular to each other, if a1a2+b1b2+c1c2=0a1a2+b1b2+c1c2=2×3+5×2+(4)×4=6+1016=0 Therefore, AB and CD are perpendicular to each other.

Q3. Show that the line through the points (4, 7, 8), (2, 3, 4) is parallel to the line through the points (– 1, – 2, 1), (1, 2, 5).

Answer. Let AB be the line through the points (4, 7, 8) and (2, 3, 4) adn CD be the through the points (-1, -2, 1) and (1, 2, 5).  The directions ratios, a1,b1,c1, of AB are (24),(37), and (48) i.e., 2,4, and 4 .   The direction ratios, a2,b2,c2, of CD are (1(1)),(2(2)), and (51) l.e., 2,4, and 4. AB will be parallel to CD, if a1a2=b1b2=c1c2 a1a2=22=1b1b2=44=1c1c2=44=1a1a2=b1b2=c1c2 Thus, AB is parallel to CD.

Q4. Find the equation of the line which passes through the point (1, 2, 3) and is parallel to the vector 3i^+2j^2k^.

Answer. It is given that the line passes through the point A (1, 2, 3). Therefore, the position vector through A is a=i^+2j^+3k^ b=3i^+2j^2k^ It is known the the line which passes through point A and parallel to 0b is given by r=a+λb, where λ is a constant. r=i^+2j^+3k^+λ(3i^+2j^2k^) This is the required equation of the line.

Q5. Find the equation of the line in vector and in cartesian form that passes through the point with position vector 2i^j+4k^ and is in the direction i^+2j^k^.

Answer.  It is given that the line passes through the point with position vector a¯=2i^+j^+4k^b=i^+2j^k^ It is known that a line through a point with position vector a and parallel to b¯ is given by   the equation, r=a+λbr=2i^j^+4k^+λ(i^+2j^k^) This is the required equation of the line in vector form. r=xi^yj^+zk^xi^yj^+zk˙=(λ+2)i^+(2λ1)j^+(λ+4)k^ 
Q6. Find the cartesian equation of the line which passes through the point (– 2, 4, – 5) and parallel to the line given by x+33=y45=z+86.

Answer.  It is given that the line passes through the point (2,4,5) and is parallel to x+33=y45=z+86 x+33=y45=z+86 The direction ratios of the line, y43=y45=z+86, are 3,5, and 6. The required line is parallel to x+33=y45=z+86  Therefore, its direction ratios are 3k,5k, and 6k, where k0 It is known that the equation of the line through the point (x1,y1,z1) and with direction  ratios, a,b,c, is given by xx1a=yy1b=zz1c Therefore the equation of the required line is  

Q7. The cartesian equation of a line is x53=y+47=z62. Write its vector form.

Answer.  The Cartesian equation of the line is x53=y+47=z62 The given line passes through the point (5,4,6) . The position vector of this point is a¯=5i^4j^+6k^ Also, the direction ratios of the given line are 3, 7 and 2. This means that the line is in the direction of vector b=3i^+7j^+2k^ It is known that the line through position vector b and in the direction of the vector a is given by the equation , r=a+λb,λR r=(5i^4j^+6k˙)+λ(3i^+7j^+2k^) This is the required equation of the given line in vector form.

Q8. Find the vector and the Cartesian equations of the lines that pass through the origin and (5, -2, 3).

Answer. The required line passes through the origin. Therefore, its position vector is given by, a=0 The direction ratios of the line through origin and (5, -2, 3) are (5-0)=5,(-2-0)=-2,(3-0)=3 The line is parallel to the vector given by the equation b=5i^2j^+3k^ The equation of the line in vector through a point with position vector and parallel to b is ,r=a+λb,λR r=0+λ(5i^2j^+3k^)r=λ(5i^2j^+3k^) The equation of the line through the point (x1,y1,z1) and direction ratios a, b, c is given by xx1a=yy1b=zz1c Therefore, the equation of the required line in the Cartesian form is x05=y02=z03x5=y2=z3.
Q9. Find the vector and the cartesian equations of the line that passes through the points (3, – 2, – 5), (3, – 2, 6).

Answer. Let the line passing through the points, P(3,2,5) and Q(3,2,6), be PQ. Since PQ passes through P (3,-2,-5), its position vector is given by, a=3i^2j^5k^ The direction ratios of PQ are given by, (3-3)=0,(-2+2)=0,(6+5)=11 The equation of the vector in the direction of PQ is b=0i^0,j^+11k^=11k^ The equation of PQ in vector form is given by, r=a+λb,λRr=(3i^2j^5k^)+11λk^ 

Q10. Find the angle between the following pairs of lines:  (i) r=2i^5j^+k^+λ(3i^+2j^+6k^) and r=7i^6k^+μ(i^+2j^+2k^) 

Answer. (i) Let Q be the angle between the given lines. The angle between the given pairs of lines is given by, cosQ=|b1b2b1||b2|| The given lines are parallel to the vectors, b1=3i^+2j^+6k^ and b2=i^+2j^+2k^ respectively. |b1|=32+22+62=7|b2|=(1)2+(2)2+(2)2=3b¯1b2=(3i^+2j^+6k^)(i^+2j^+2k^)=3×1+2×2+6×2=3+4+12=19 cosQ=197×3Q=cos1(1921) (ii) The given lines are parallel to the vectors, b1=i^j^2k^ and b2=3i^5j^4k^ respectively. |b1|=(1)2+(1)2+(2)2=6|b2|=(3)2+(5)2+(4)2=50=52b1b2=(i^j^2k^)(3i^5j^4k^)=131(5)2(4)=3+5+8=16 

Q11. Find the angle between the following pair of lines: 

Answer. (i)  Let b1 and b2 be the vectors parallel to the pair of lines, x22=y15=z+33 and x+21=y48=z54 , respectively.  b1=2i^+5j^3k^ and b2=i^+8j^+4k^|b1|=(2)2+(5)2+(3)2=38|b2|=(1)2+(8)2+(4)2=81=9b1b2=(2i^+5j^3k^)(i^+8j^+4k^)=2+4012=26 The angle, Q, between the given pair of lines is given by the relation, cosQ=|b1b2|b1|b2|cosQ=26938Q=cos1(26938) (ii) Let b1,b2 be the vectors parallel to the given pair of lines, x2=y2=z1 x54=y51=z38, respectively. b1=2i^+2j^+k^b2=4i^+j^+8k^ |b1|=(2)2+(2)2+(1)2=9=3|b2|=42+12+82=81=9b1b2=(2i^+2j^+k^)(4i^+j^+8k^)=2×4+2×1+1×8=8+2+8=18 If Q is the angle between the given pair of lines, then cosQ=||bb2||b||b2|| 
Q12. Find the values of p so that the lines 1x3=7y142p=z32 and 77x3p=y51=6z5 are at right angles.

Answer. The given equations can be written in the standard form as x13=y22p7=z32 and x13p=y51=z65 The direction ratios of the lines are 3,2p7,2 and 3p7,1,5 respectively. Two lines with direction ratios, a1,b1,c1 and a2,b2,c2 are perpendicular to each other, if a1a2+b1b2+c1c2=0 (3)(3p7)+(2p7)(1)+2(5)=09p7+2p7=1011p=70p=7011 Thus, the value of p is 7011.

Q13. Show that the lines x57=y+25=z1 and x1=y2=z3 are perpendicular to each other.

Answer. The equations of the given lines are x57=y+25=z1 and x1=y2=z3 The direction ratios of the given lines are (7,-5,1) and ( 1,2,3 ) respectively. Two lines with direction ratios , a1,b1,c1 and a2,b2,c2 are perpendicular to each other, if a1a2+b1b2+c1c2=07×1+(5)×2+1×3=710+3=0 Therefore, the given lines are perpendicular to each other.

Q14. Find the shortest distance between the lines 
Answer. The equations of the given lines are r=(i^+2j^+k^)+λ(i^j^+k^) and r¯=2i^j^k^+μ(2i^+j^+2k^) It is known that the shortest distance between the lines, r=a1+λb1 and r=a2+μb2 is given by , d=|(b1×b2)(a2a2)|b1×b2|| Comparing the given equations, we obtain a1=i^+2j^+k^b1=i^j^+k^a2=2i^j^k^b2=2i^+j^+2k^a2a1=(2i^j^k^)(i^+2j^+k^)=i^3j^2k^ b1×b2=|i^j^k˙111212| b1×b2=(21)i^(22)j^+(1+2)k^=3i^+3k^|b1×b2|=(3)2+(3)2=9+9=18=32 Substituting all the values in equation (1), we obtain d=|(3i^+3k^)(i^3j^2k^)32|d=|3.1+3(2)32|d=|932|d=32=3×22×2=322 Therefore, the shortest distance between the two lines is 322 units.

Q15. Find the shortest distance between the lines x+17=y+16=z+11 and x31=y52=z71


Answer. The given lines are x+17=y+16=z+11 and x31=y52=z71 It is known that the shortest distance between the two lines, xx1a1=yy1b1=zz1c1 and xx2a2=yy2b2=zz2c2, is given by, d=|x2x1y2y1z1a1b1c1a2b2c2|(bc2b2c1)2+(c1a2c2a1)2+(a1b2a2b1)2 Comparing the given equations, we obtain x1=1,y1=1,z1=1a1=7,b1=6,c1=1x2=3,y2=5,z2=7a2=1,b2=2,c2=1 Then, |x2x1y2y1z2z1a1b1c1a2b2c2|=|468761121| =4(6+2)6(71)+8(14+6)=163664=116 (b1c2b2c1)2+(c1a2c2a1)2+(a1b2a2b1)2=(6+2)2+(1+7)2+(14+6)2=16+36+64=116=229 Substituting distance is always non-negative, the distance between the given lines is 229 units.

Q16. Find the shortest distance between the lines whose vector equations are 

Answer. The given lines are r=i^+2j^+3k^+λ(i^3j^+2k^) and r=4i^+5j^+6k^+μ(2i^+3j^+k^) It is known that the shortest distance between the lines, r=a1+λb and r=a2+μb2, is given by d=|(b1×b2)(a2a2)|b1×b2|| Comparing the given equations with r=a1+λb1 and r=a2+μb2, we obtain a1=i^+2j^+3k^b1=i^3j^+2k^a2=4i^+5j^+6k^b2=2i^+3j^+k^ a2a1=(4i^+5j^+6k˙)(i^+2j^+3k˙)=3i^+3j^+3k^ b1×b2=|i^j^k˙132231|=(36)i^(14)j^+(3+6)k^=9i^+3j^+9k^ |b1×b2|=(9)2+(3)2+(9)2=81+9+81=171=319(b1×b2)(a2a1)=(9i^+3j^+9k^)(3i^+3j^+3k^) =9×3+3×3+9×3=9 Substituting all the values in equation (1), we obtain d=|9319|=319 Therefore, the shortest distance between the two given lines is 319 units.

Q17. Find the shortest distance between the lines whose vector equations are 

Answer.  The given lines are r=(1t)i^+(t2)j^+(32t)k^r=(i^2j^+3k^)+t(i^+j^2k^)r=(s+1)i^+(2s1)j^(2s+1)k^r=(i^j^+k^)+s(i^+2j^2k^) It is known that the shortest distance between the lines, r=a1+λb and r=a2+μb2, is given by, d=|(b1×b2)(a2a2)|b1×b2|| For the given equations, a1=i^j^+3k^b1=i^+j^2k^a2=i^j^k^b2=i^+2j^2k^a2a1=(i^j^k^)(i2j^+3k^)=j^4k^ b1×b2=i^j^k˙112122|=(2+4)i^(2+2)j^+(21)k^=2i^4j^3k^ |b1×b2|=(2)2+(4)2+(3)2=4+16+9=29(b1×b2)(a2a1)=(2i^4j^3k^)(j^4k^)=4+12=8 Substituting all the values in equation (3), we obtain d=|829|=829 Therefore, the shortest distance between the lines is 829 units.

Chapter-11 (Three Dimensional Geometry)