NCERT Solutions Class 12 Maths Chapter-10 (Vector Algebra)Exercise 10.2

NCERT Solutions Class 12 Maths Chapter-10 (Vector Algebra)Exercise 10.2

NCERT Solutions Class 12 Maths from class 12th Students will get the answers of Chapter-10 (Vector Algebra)Exercise 10.2 This chapter will help you to learn the basics and you should expect at least one question in your exam from this chapter.
We have given the answers of all the questions of NCERT Board Mathematics Textbook in very easy language, which will be very easy for the students to understand and remember so that you can pass with good marks in your examination.


Solutions Class 12 Maths Chapter-10 (Vector Algebra)Exercise 10.2

Exercise 10.2

Q1. Compute the magnitude of the following vectors: 

Answer. The given vectors are: a=i^+j^+k^;b=2i^7j^3k^;c=13i^+13j^13k^ |a|=(1)2+(1)2+(1)2=3|b|=(2)2+(7)2+(3)2=4+49+9=62 

Q2. Write two different vectors having same magnitude.

Answer.  Consider a=(i^2j^+3k^) and b=(2i^+j^3k^) It can be observed that |a|=12+(2)2+32=1+4+9=14 and  

Q3. Write two different vectors having same direction.

Answer.  Consider p=(i^+j^+k^) and q=(2i^+2j^+2k^) The direction cosines of p are given by,  I=112+12+12=13,m=112+12+12=13, and n=112+12+12=13 The direction cosines of q are given by  

Q4. Find the values of x and y so that the vectors 2i^+3j^ and xi^+yy^ are equal.

Answer. The two vector 2i^+3j^ and xi^+yj^ will be equal if their corresponding components are equal. Hence, the required values of x and y are 2 and 3 respectively.

Q5. Find the scalar and vector components of the vector with initial point (2, 1) and terminal point( -5, 7).

Answer. The vector with the initial point p (2, 1) and terminal point Q ( 5, 7) can be given by, PQ=(52)i^+(71)j^PQ=7i^+6j^ Hence, the required scalar components are —7 and 6 while the vector components are 

Q6. Find the sum of the vectors 

Answer. The given vector are a=i^2j^+k^,b=2i^+4j^+5k^ and c=i^6j^7k^ 

Q7. Find the unit vector in the direction of the vector 

Answer. 

Q8. Find the unit vector in the direction of vector PQ , where p and Q are the points (1, 2, 3) and (4, S, 6), respectively.

Answer.  The given points are P(1,2,3) and Q(4,5,6).PQ=(41)i^+(52)j^+(63)k^=3i^+3j^+3k^|PQ|=32+32+32=9+9+9=27=33 

Q9. 

Answer.  The given vectors are a=2i^j^+2k^ and b=i^+j^k^a=2i^j^+2k^b=i^+j^k^a+b=(21)i^+(1+1)j^+(21)k^=1i^+0j^+1k^=i^+k^|a+b|=12+12=2 

Q10. Find a vector in the direction of vector 5i^j^+2k^ which has magnitude 8 units.

Answer.  Let a=5i^j^+2k^|a|=52+(1)2+22=25+1+4=30a^=a|a|=5i^j^+2k^30  Hence, the vector in the direction of vector 5i^j^+2k^ which has magnitude 8 units is  given by, 8a^=8(5i^j^+2k^30)=4030i^830j^+1630k^=8(5ij¯+2k30) 

Q11. Show that the vectors 2i^3j^+4k^ and 4i^+6j^8k^ are collinear.

Answer. 

Q12. Find the direction cosines of the vector 

Answer.  Let a=i^+2j^+3k^|a|=12+22+32=1+4+9=14 

Q13. Find the direction cosines of the vector joining the points A (I, 2, -3 ) and B (-1 , -2 , -3 ) directed from A to B.

Answer.  The given points are A(1,2,3) and B(1,2,1) . AB=(11)i^+(22)j^+{1(3)}k^AB=2i^4j^+4k^|AB|=(2)2+(4)2+42=4+16+16=36=6 Hence, the direction cosines of `

Q14. Show that the vector i^+j^+k^ is equally inclined to the axes OX, OM, and OZ.

Answer.  Let a=i^+j^+k^ Then, |a|=12+12+12=3 Therefore, the dlrectlon coslnes of aare(13,13,13) Then we have cosα=13,cosβ=13,cosγ=13 Hence, the given vector is equally inclined to axes OX, OM, and OZ.

Q15. Find the position vector of a point R which divides the line joining two points P and Q i^+2j^k^ and i^+ȷ^+k^ whose position vectors are respectively, in the ratio 2:1 (i) internally (ii) externally

Answer. The position vector of point R dividing the line segment joining two points P and Q in the ratio m: n is given by:  1. Internally: mb+nam+n ii. Externally: mbnamn Position vectors of P and Q are given as: OP=i^+2j^k^ and OQ=i^+j^+k^ (i) The position vector Of point R Which divides the line joining two points p and Q internally in the ratio 2:1 is given by, OR¯=2(i^+j^+k^)+1(i^+2j^k^)2+1=(2i^+2j^+2k^)+(i^+2j^k^)3=i^+4j^+k^3=13i^+43j^+13k^ (ii) The position vector of point R which divides the line joining two points P and Q externally in the ratio 2:1 is given by, 

Q16. Find the position vector of the midpoint of the vector joining the points P (2, 3, 4) and Q (4 , 1 , -2 )

Answer. The position vector of mid-point R of the vector joining points P (2, 3, 4) and Q (4, 1, - 2) is given by, 

Q17. 

Answer. position vectors Of points A, B, and c are respectively given as: a=3i^4j^4k^,b=2i^j^+k^ and c=i^3j^5k^a=3i^4j^4k^,b=2i^j^+k^ and c=i^3j^5k^ AB=ba=(23)i^+(1+4)j^+(1+4)k^=i^+3j^+5k^BC¯=cb=(12)i^+(3+1)j^+(51)k^=i^2j^6k^CA=ac=(31)i^+(4+3)j^+(4+5)k^=2i^j^+k^ |AB|2=(1)2+32+52=1+9+25=35|BC|2=(1)2+(2)2+(6)2=1+4+36=41|CA|2=22+(1)2+12=4+1+1=6 

Q18. In triangle ABC Which Of the following is not true: Solutions Class 12 Maths Chapter-10 (Vector Algebra)Exercise 10.2 

Answer. Solutions Class 12 Maths Chapter-10 (Vector Algebra)Exercise 10.2 On applying the triangle law of addition in the given triangle, we have: AB+BC=ACAB+BC=CAAB¯+BC+CA¯=0  The equation given in alternative A is true. AB+BC=ACAB+BCAC=0 The equation given in altermative B is true.  From equation (2), we have:   Now, consider the equation given in altemative C: AB+BCCA=0AB+BC=CA¯ AC=CAAC=ACAC+AC=02AC=0AC=0 , which is not true.  Hence, the equation given in altemative C is incorrect. The correct answer is C.

Q19. 

Answer.  If a and b are two collinear vectors, then they are parallel.  Therefore, we have: b=λa (For some scalar λ) If λ=±1, then a=±b If a=a1i^+a2j^+a3k^ and b=b1i^+b2j^+b3k^, then b=λa. b1i^+b2j^+b3k^=λ(a1i^+a2j^+a3k^)b1i^+b2j^+b3k^=(λa1)i^+(λa2)j^+(λa3)k^b1=λa1,b2=λa2,b3=λa3b1a1=b2a2=b3a3=λ Thus, the respective components of a and b are proportional.  

Chapter-10 (Vector Algebra)