NCERT Solutions Class 12 Maths (Vector Algebra) Miscellaneous Exercise

NCERT Solutions Class 12 Maths Chapter-10 (Vector Algebra) Miscellaneous Exercise

NCERT Solutions Class 12 Maths from class 12th Students will get the answers of Chapter-10 (Vector Algebra)Miscellaneous Exercise This chapter will help you to learn the basics and you should expect at least one question in your exam from this chapter.
We have given the answers of all the questions of NCERT Board Mathematics Textbook in very easy language, which will be very easy for the students to understand and remember so that you can pass with good marks in your examination.
Solutions Class 12 Maths (Vector Algebra) Miscellaneous Exercise


Q1. Write down a unit vector in KY-plane, making an angle of 30 with the positive direction of x-axis.

Answer.  If r is a unit vector in the XY-plane, then r=cosθi^+sinθj^ Here, θ is the angle made by the unit vector with the positive direction of the x -axis.  Therefore, for θ=30: 

Q2. 

Answer.  The vector joining the points (x1,y1,z1) and Q(x2,y2,z2) can be obtained by PQ¯= Position vector of Q Position vector of P =(x2x1)i^+(y2y1)j^+(z2z1)k^|PQ|=(x2x1)2+(y2y1)2+(z2z1)2 

Q3. A girl walks 4 km towards west, then she walks 3 km in a direction 30east of north and stops. Determine the girl's displacement from her initial point of departure.

Answer. Let O and B be the initial and final positions of the girl respectively. Then, the girl's position can be shown as: Solutions Class 12 Maths Chapter-10 (Vector Algebra) Miscellaneous Exercise OA=4i^AB=i^|AB|cos60+j^|AB|sin60 =i^3×12+j^3×32=32i^+332j^ OB=OA+AB=(4i^)+(32i^+332j^)=(4+32)i^+332j^=(8+32)i^+332j^=52i^+3323^ 

Q4. If 

Answer. ΔABC, let CB=a,CA=b, and AB=c(as shown in the following figure) Solutions Class 12 Maths Chapter-10 (Vector Algebra) Miscellaneous Exercise Now, by the triangle law of vector addition we have a=b+c It is clearly known that|a¯|,|b|, and |c| Also, it is known that the sum of the lengths of any two sides of a triangle is greater than the third side. |a¯|<|b|+|c¯| Hence it is not true that 

Q5. Find the value of x x for which x(i^+j^+k^) is a unit vector .

Answer. x(i^+j^+k^) is a unit vector if |x(i^+j^+k^)|=1 

Q6. 

Answer. a=2i^+3j^k^ and b=i^2j^+k^ Let c be the resultant of a and b Then, c=a+b=(2+1)i^+(32)j^+(1+1)k^=3i^+j^ c=a+b=(2+1)i^+(32)j^+(1+1)k^=3i^+j^|c|=32+12=9+1=10c^=c|c|=(3i^+j^)10 

Q7.  If a=i^+j^+k^,b=2i^j^+3k^ and c=i^2j^+k^, find a unit vector parallel to the  vector 2ab+3c

Answer.  we have, a=i^+j^+k^,b=2i^+3k^ and c=i^2j^+k^2ab+3c=2(i^+j^+k^)(2i^j^+3k^)+3(i^2j^+k^) =2i^+2j^+2k^2i^+j^3k^+3i^6j^+3k^=3i^3j^+2k^|2ab+3c|=32+(3)2+22=9+9+4=22 

Q8. Show that the points A (1, -2, -8), B (5, 0, -2) and C (11, 3, 7) are collinear, and find the ratio in which B divides AC.

Answer.  The given points are A(1,2,8),B(5,0,2), and C(11,3,7) . AB=(51)i^+(0+2)j^+(2+8)k^=4i^+2j^+6k^ BC=(115)i^+(30)j^+(7+2)k^=6i^+3j^+9k^AC=(111)i^+(3+2)j^+(7+8)k^=10i^+5j^+15k^|AB|=42+22+62=16+4+36=56=214|BC|=62+32+92=36+9+81=126=314|AC|=102+52+152=100+25+225=350=514  Thus, the given points A,B, and C are collinear.  Now, let point B divide AC in the ratio λ:1 . Then, we have: OB=λOC+OA(λ+1) OB=λOC+OA(λ+1)5i^2k^=λ(11i^+3j^+7k^)+(i^2j^8k^)λ+1 (λ+1)(5i^2k^)=11λi^+3λj^+7λk^+i^2j^8k^5(λ+1)i^2(λ+1)k^=(11λ+1)i^+(3λ2)j^+(7λ8)k^ 

Q9. Find the position vector of a point R which divides the line joining two points P and Q Whose position vector are (2a+b) and (a3b) externally in the ratio 1:2 Also, show that P is the mid point of the line segment RQ.

Answer.  It is given that OP¯=2a+b,OQ=a3b It is given that point R divides a line segment joining two points P and Q externally in  the ratio 1:2. Then, on using the section formula, we get:  OR=2(2a+b)(a3b)21=4a+2ba+3b1=3a+5b Therefore, the position vector of point R is 3a+5b 

Q10. 

Answer.  Adjacent sides of a parallelogram are given as: a=2i^4j^+5k^ and b=i^2j^3k^ Then, the diagonal of a parallelogram is given by a+b a+b=(2+1)i^+(42)j^+(53)k^=3i^6j^+2k^ Thus, the unit vector parallel to the diagonal is a+b|a+b|=3i^6j^+2k^32+(6)2+22=3i^6j^+2k^9+36+4=3i^6j^+2k^7=37i^67j^+27k^  Area of parallelogram ABCD=|a×b| a×b=|i^j^k^245123|=i^(12+10)j^(65)+k^(4+4)=22i^+11j^=11(2i^+j^) 

Q11. Show that the direction cosines of a vector equally inclined to the axes OX, OY and OZ are 

Answer.  Let a vector be equally inclined to axes ox, oy, and oz at angle a .  Then, the direction cosines of the vector are cos a,cosa,a and cos a .  Now,  cos2α+cos2α+cos2α=13cos2α=1cosα=13 Hence, the direction cosines of the vector which are equally inclined to the axes 

Q12. Let a=i^+4j^+2k^,b=3i^2j^+7k^ and c=2i^j^+4k^ . Find a vector d¯ Perpendicular to both a and b, and cd=15

Answer.  Let d¯=d1i^+d2j^+d3k^ since d¯ is perpendicular to both a and b , we have: da=0d1+4d2+2d3=0  And db=03d12d2+7d3=0 Also, it is given that: cd=152d1d2+4d3=15  On solving (i),(ii), and (iii), we get: d1=1603,d2=53 and d3=703d=1603i^53j^703k˙=13(160i^5j^70k^) Hence the required vector is 

Q13.  The scalar product of the vector i^+j^+k^ with a unit vector along the sum of vectors 2i^+4j^5k^ and λi^+2j^+3k^ is equal to one. Find the value of λ

Answer. (2i^+4j^5k^)+(λi^+2j^+3k^)=(2+λ)i^+6j^2k^ Therefore, unit vector along  (2+λ)i^+6j^2j^(2+λ)2+62+(2)2=(2+λ)i^+6j^2k^4+4λ+λ2+36+4=(2+λ)i^+6j^2k^λ2+4λ+44 Scalar product of (t+j^+k^) with this unit vector is 1 

Q14. 

Answer.  since a,b, and c are mutually perpendicular vectors, we have ab=bc=ca=0 It is given that: |a|=|b|=|c|  Let vector a+b+c be inclined to a,b, and c at angles θ1,θ2, and θ3 respectively.  Then, we have:  cosθ1=(a+b+c)a|a+b¯+c||a|=aa+ba+ca|a+b+c|a| =|a|2|a+b+c|a=|a|a+b+c| cosθ2=(a+b+c)b|u+b+c||b|=ab+bb+cb|u+b+c||b| =|b|2|a+b+c||b|=|b|a+b+c| cosθ3=(a+b+c)c|a+b+c||c|=ac+bc+cc|a+b+c|c|=|c¯|2|a+b+c|c|=|c|a+b+c| 

Q15. 

Answer. 

Q16. If θ is the angle between two vectors a and b, then ab0 

Answer.  Let θ be the angle between two vectors a and b Then, without loss of generality, a and b are non-zero vectors so  that |a| and |b| are positive  

Q17.  Let a and b be two unit vectors and θ is the angle between them. Then a+b is a unit  vector if  (A)θ=π4 (B)θ=π3 (C)θ=π2 (D)θ=2π3


Answer.  Let a and b be two unit vectors and θ be the angle between them.  Then, |a|=|b|=1 Now, a+b is a unit vector if |a+b|=1 |a+b|=1(a+b)2=1(a+b)(a+b)=1aa+ab+ba+bb=1|a|2+2ab+|b|2=1 |a|2+2ab+|b|2=112+2|a||b|cosθ+12=11+2.1.1cosθ+1=1cosθ=12θ=2π3 

Q18. The value of i^(j^×k^)+j^(i^×k^)+k^.(i^×j^) is  is (A) 0 (B)-1 (C) 1 (D) 3

Answer. 

Q19. θ is the angle between any two vectors a and b, then |=|a×b| when  (A)0(B)π4(C)π2(D)n


Answer.  Let θ be the angle between two vectors a and b Then, without loss of generality, a and b are non-zero vectors, so  that |a| and |b| are positive |ab|=|a×b|