NCERT Solutions Class 11 गणित-II Chapter-12 (त्रिविमीय ज्यामिति का परिचय)
Class 11 गणित-II
पाठ-12 (त्रिविमीय ज्यामिति का परिचय)
अभ्यास के अन्तर्गत दिए गए प्रश्नोत्तर
प्रश्न 1.
एक बिन्दु x-अक्ष पर स्थित है। इस के y-निर्देशांक तथा z-निर्देशांक क्या हैं ?
हल:
x-अक्ष पर किसी बिन्दु के निर्देशांक (x, 0, 0) होते हैं जिसमें y = 0, z = 0.
प्रश्न 2.
एक बिन्दु XZ तल में है। इसके y – निर्देशांक के बारे में आप क्या कह सकते हैं?
हल:
XZ तल में y- निर्देशांक 0 होता है। इस तल का बिन्दु (x, 0, z) के रूप में होता है।
प्रश्न 3.
अष्टाशों के नाम बताइए, जिनमें निम्नलिखित बिन्दु स्थित हैं:
(1, 2, 3), (4, -2, 3), ( 4, -2, -5), (4, 2, -5), (-4, 2, -5), (-4, 2, 5), (-3, -1, 6), (2, -4, -7)
हल:
दिए हुए बिन्दुओं के अष्टांश हैं:
(i) (1, 2, 3) – XOYZ – पहला
(ii) (4, -2, 3) – XOYZ. – चौथा
(iii) (4, 2, -5) – XOY’Z’ – आठवाँ
(iv) (4, 2, -5) – XOYZ’ – पाँचवाँ
(v) (-4, 2, -5) – XOYZ’ – छटा
(vi) (-4, 2, 5) – (XOYZ) – दूसरी
(vii) (-3, -1, 6) – (XOY’Z) – तीसरा
(viii) (2, -4, -7) – (XOY’Z’) – आठवाँ
प्रश्न 4.
रिक्त स्थानों की पूर्ति कीजिए:
(i) x-अक्ष और y-अक्ष दोनों एक साथ मिल कर एक तल बनाते हैं, उस तल को …………. कहते हैं।
(ii) XY- तल में एक बिन्दु के निर्देशांक ……… रूप के होते हैं।
(iii) निर्देशांक तल अंतरिक्ष को ………. अष्टांश में विभाजित करते हैं।
हल:
(i) x-अक्ष और y-अक्ष दोनों एक साथ मिलकर एक तल बनाते है उस तल को XY-तल कहते हैं।
(ii) XY- तल में एक बिन्दु के निर्देशांक (x, y, 0) रूप के होते हैं।
(iii) निर्देशांक तल अंतरिक्ष को 8 क्षेत्र में विभाजित करते हैं।
प्रश्न 1.
निम्नलिखित बिन्दु-युग्मों के बीच की दूरी ज्ञात कीजिए:
(i) (2, 3, 5) और (4, 3, 1)
प्रश्न 2.
दर्शाइए कि बिन्दु (-2, 3, 5), (1, 2, 3) और (7, 0, -1) संरेख हैं।
प्रश्न 3.
निम्नलिखित को सत्यापित कीजिए:
(i) (0, 7, -10), (1, 6, -6), और (4, 9, – 6) एक समद्विबाहु त्रिभुज के शीर्ष हैं।
प्रश्न 4.
ऐसे बिन्दुओं के समुच्चय का समीकरण ज्ञात कीजिए जो बिन्दु (1, 2, 3) और (3, 2, -1) से समदूरस्थ हैं।
प्रश्न 5.
बिन्दुओं P से बने समुच्चय का समीकरण ज्ञात कीजिए जिनकी बिन्दुओं A(4, 0, 0) और B(-4, 0, 0) से दूरियों का योगफल 10 है।
हल:
माना बिन्दु P के निर्देशांक (x, y, z) हैं।
प्रश्न 1.
बिन्दुओं (-2, 3, 5) और (1, -4, 6) को मिलाने से बने रेखाखण्ड को अनुपात (i) 2 : 3 में अंतः (ii) 2 : 3 में बाह्यतः विभाजित करने वाले बिन्दु के निर्देशांक ज्ञात कीजिए।
प्रश्न 2.
दिया गया है कि बिन्दु P(3, 2, -4), Q(5, 4, -6) और R(9, 8, -10) संरेख हैं। वह अनुपात ज्ञात कीजिए जिसमें Q, PR को विभाजित करता है।
प्रश्न 3.
बिन्दुओ (-2, 4, 7) और (3, -5, 8) को मिलाने वाली रेखाखण्ड, YZ- तले द्वारा जिस अनुपात में विभक्त होता है, उसे ज्ञात कीजिए।
हल:
मान लीजिए बिन्दु P पर तल YZ रेखाखण्ड AB क k : 1 के अनुपात में प्रतिच्छेद करता है, तब YZ – तल पर प्रत्येक बिन्दु (0, y, z) के रूप में होगा।
प्रश्न 4.
विभाजन सूत्र का प्रयोग करके दिखाइए A(2, -3, 4), B(-1, 2, 1) तथा C(0, , 2)संरेख हैं।
प्रश्न 5.
P(4, 2, -6) और Q(10, -16, 6) के मिलाने वाली रेखाखण्ड PQ को सम-त्रिभाजित करने वाले बिन्दुओं के निर्देशांक ज्ञात कीजिए।
हल:
माना बिन्दु A, B रेखाखण्ड PQ को 3 समान भागों में विभाजित करती है।
अध्याय 12 पर विविध प्रश्नावली
प्रश्न 1.
समातेर चतुर्भुज के तीन शीर्ष A(3, -1, 2), B(1, 2, -4) व C(-1, 1, 2) हैं। चौथे शीर्ष D के निर्देशांक ज्ञात कीजिए।
हल:
शीर्ष A और C क्रमशः (3, -1, 2), (-1, 1, 2) हैं।
प्रश्न 2.
एक त्रिभुज ABC के शीर्षों के निर्देशांक क्रमशः A(0, 0, 6), B(0, 4, 0) तथा C(6, 0, 0) हैं। त्रिभुज की माध्यिकाओं की लंबाई ज्ञात कीजिए।
प्रश्न 3.
यदि त्रिभुज PQR का केन्द्रक मूल बिन्दु है और शीर्ष P(2a, 2, 6), Q(-4, 3b, -10) और R(8, 14, 2c) हैं तो a, b और c का मान ज्ञात कीजिए:
प्रश्न 4.
y-अक्ष पर उस बिन्दु के निर्देशांक ज्ञात कीजिए जिसकी बिन्दु P(3, -2, 5) से दूरी 5√2 है।
प्रश्न 5.
P(2, -3, 4) और (8, 0, 10) को मिलाने वाली रेखाखण्ड पर स्थित एक बिन्दु R का x- निर्देशांक 4 है। बिन्दु R के निर्देशांक ज्ञात कीजिए।
प्रश्न 6.
यदि बिन्दु A और B क्रमशः (3, 4, 5) तथा (-1, 3, -7) हैं। चर बिन्दु P द्वारा निर्मित समुच्चय से संबंधित समीकरण ज्ञात कीजिए जहाँ PA² + PB² = k² जब कि k अचर है।
एनसीईआरटी सोलूशन्स क्लास 11 गणित-I
- 1. सम्मुच्य
- 2. संबंध एवं फलन
- 3. त्रिकोणमितीय फलन
- 4. गणितीय आगमन का सिद्धांत
- 5. सम्मिश्र संख्याएँ और द्विघातीय समीकरण
- 6. रैखिक असमिकाएँ
- 7. क्रमचय एवं संचय
- 8. द्विपद प्रमेय
- 9. अनुक्रम तथा श्रेणी